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FOREWORD

This is the final report of a study made under Contract NAS 1-141614 for
NASA-Langley Research Center, Hamptonm, Virginia. Mr. Robert D. Witcofski of
the Aeronautical Systems Division at NASA~Langley Research Center was tech-
nical monitor for the study. The report presents results of work periormed
during the 14 month period, October 1976 through November 1977. Volume I
contains Sections 1 through 6: Volume II contains Sections 7 through 10, and
Appendixes A through G.
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7. FUEL CONTAINMENT SYSTEM

As used herein, the term fuel containment system refers to two basic
subsystems; the fuel tank structure and its associated supporting structural
components, and the tank cryogenic insulation system. Both integral and non-
integral fuel tanks were evaluated. An integral tank is defined as ome which
provides the ajrcraft structure in the rank area to carry fuselage structural
loads as well as providing for fuel containment. A nonintegral tank is mounted
within a conventional airframe and serves only as a fuel containment vessel.

The methodology used in the selection of a preferred design of fuel
containment system was to apply a consistent set of criteria to a three-step
process, varying only in exteat of analysis, proceeding from concept screen-—
ing, to evaluvation of preferred candidates, to selection of a final configura-
tion. This process is shown diagrammatically in Figure 82 using the insula-
tion system as an example.

1o order to focus design and analysis attention on constructive aspects,
the aft tank of the aircraft was selected and used as the model for evaiuation
of canaidate structure and insulation concepts. After a preferred afr tank
design was established, the forward tank was sized and weighed using the same
design concepts for both structure and insulation based on spot analysis as
deemed necessary to account for local diiferences.

The procedures and results of the investigation of tank insulation
systems are presented in 7.1. Information rela:ive to the tank structure
is presented in 7.2.

7.1 Tank Insulation

A total of 15 candidate tank insulation concepts were evaluated in the
inicial screesning operation to find the two most promising for use with
integral-type tanks and the two most promising for nonintegral tanks. The
15 candi{dates included both active (inert gas purged and dynam’cally pumped
vacuun systems) and passive concepts. A closed cell polymeric foam insula-
tion, applied to the external surfaces of zn integral tank was used as the
baseline system for comparative evaluation purposes.

The four preferred insulation systems (two for integral and two for
nonintegral tanks) were subjected to a more rigorous analysis, leading

finally to selection of ome concept to be incorporated in the design of the
subject LHp-fueled tramsport aircraft.

1e5
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Figure 82, Tank insulation analysis procedure.

The procedures employed in each step of this selection process, and
the results which were obtained, are discussed in the following paragraphs.

In the initisl phase of the program, a preliminary study was made of the
benefits which could be derived by using active cooling to reduce fuel tank
boiloff and eliminate venting in-flight and on the ground. %he active systems
considered were:

® Refrigeration of the liquid using a closed cycle mechanical
refrigerator.

e A thermodynamic vent system incorporating a vapor—cooled shield
within the insulation and a Joule-Thompson (J-T) expansion device.

e An intermediate Ny~cooled shield within the insulation, using either
vaporization of liquid or a cooled gas.

For all of these systems the weights associated with the refrigeration davices,
shields, and plumbing lines exceeded the weight of fuel saved by a minimum

of 1000 kg (2200 1b) per tank for an insulation system having an equivalent
(unassisted bg external cooling) liquid-wetted wall heat f]jx’; of 31.5 W/

(10 Btu/hr fe4)
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In addition to the weight penalry associated with active cooling, the
normal aircraft operational and maintenance procedures are more complex and
the dispatch reliability is decreased. Also, aircraft and terminal vent
systems would have to be provided to accommodate tank venting in the event of
cooling system malfunction.

Because of these operational disadvantages, and because the weight
estimates far exceeded the fuel saving benefits, no further study was made to
optimize any concept.

7.1.1 Design requirements and evaluation criteria. =~ Selection of the insu-
lation system for a commercial tramsport aircraft LHy fuel tank is con~
strained by the requirements of minimum operating costs and the achievement
of a very high level of safety throughout the aircrafr lifetime. In order
to realize cost goals, the system must combine lightweight construction
with low heat transfer characteristics which are consistent with in-flight
tank pressurization requirements; have a high reliabiflity, low maintenance,
long life cycle; and have development and fabrication cost commensurate
with commercial aircraft practices. Safety considerations must include
freedom, not only from loss of life or aircraft during a flight or ground
operation incident, but also failures potentially dangerous to maintenance
operations. Design requirements and safety, performance, and operational
criteria were established for the fuel containment system of the aircraft.

The aft tank configuration was used for the screening and preferred
systems studies to focus the analysis effort to the maximum degree. Prior
aerospace research and development results and commercial experience with
cryogenic storage vessels were used to evaluate potential problem areas
and to assess the applicabilicy of each insulation concept.

The general crireria used in evaluation and ranking of cthe insulation
concepts were:

e Safety - No single or probable combination of failures shall lead
to lcss of life or aircraft. Assessment >f failure modes and cheir
overall impact was consistent with current or acticipated safety
practices applicable co commercial aircraft in 1990-1995 and to
storage and handling of liquid hydrogen. Modes of failure consideved
were: accldental penetration of exterior surfaces, air or GH2 leak-
age into insulation or aircraft, cryopumping of 0, in organic mate-
rials, malfunction of purge or vacuum system and associated contrel
compouents, toxicity of products in event of an external fire.

e Performance — Minimization of aircraft DOC. DOC was evaluated as
a function of system inert weights (including accessories associated
with purge/vacuum concepts); fuel vaporizeé to maintain tank pres—
sure as well as nonrecoverable fuel loss (vent) weights; system
volume; and maintemance requirements (inspection/repair/replacement).
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e Producibility — Each system nust be designed so it can be fabricated,
assembled, inspected and maintained consistent with aircraft practices.

Cost estimates were based on producticn of 350 ship sets plus 20 perceat
spares. If costs were competitive, the concept which provided the aircraft
with the lowest energy consumption was selected.

7.1.2 Candidate insulztion concepts. - Insulation systems for aircraft LHp
fuel tanks serve the following basic purposes:

e To reduce the heat rates to the tanks to a level consistent with
minimizing direct operating cosrs.

e To prevent the buildup of parasitic weight on the aircraft in flight
due to condensation or freezing of atmospheric constituents, e.g.,
water vapor.

. Since all atmospheric gases will freeze at LH, temperature, air in the
insulation system must either be evacuated by active pumping and/or passive
:ryopumping, or a non condeansible gas such as helium or hydrogen must be
substituted in the insulation. Consequently, integrity of the vapor barrier
is a critical item in the design of extermal insulation systems. The
insulation thickness on all candidate systems must be sized, as a mwinimum
to keep the external sealed surface above the dew point (the insulation
surface for an external application or the tank surface for an intermal
insulation).

Fifteen insulation system concepts, shown in Table 30, were selected
for analysis. Table 31 shows the status of development work on cryogenic
insulation systems which is applicable to the candidate concepts. Thermal
performance test data from these programs were used in the analysis of the
systems for the subject alrcraft use.

Plumbing schematics for the active systems, i.e., those requiring
either vacuum pumps or purging, are showa in Figures 83 through 85. The
plumbing schematic for comcept 1, Figure 83, shows the automatic controls
used to maintain the correct helium pressure during aircraft ascent and
descent so as to prevent structural failure of the purge jacket. Dual
Np/He purge system controls for concept 2 are shown in Figure 84. The dif-
ferential pressure measurement across the inner purge barrier controls the
helium pressure; the nitrogen pressure control is referenced to ambient
pressure. The 10=% Torr pressure requirement for concept 9 requires a2
turbomolecular pump and fore pump in addition to the blowers as showm in
Figure 85. Coucepts 10, 11, and 12 do not require complex turbomolecular
and fore pumps because of the more modest vacuum pressures used in those
concepts. Theilr plumbing schematics are shown in Figure 86. In all con-
cepts the pumping systems operate only when the specified vacuum pressures
are exceedad.
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TABLE 30. — TANK INSUIATION SYSTEM CONCEPTS
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TABLE 31. -~ STATUS OF DEVELOPMERT APPLICABLE TO THE
INSULATION SYSTEM CONCEPTS

Applicable Development

Insulation Reusable
System System
Concept Design? Demonstrated on: Comments
1. He Purged |Yes (Space NAS 8-27419, 2.2 m|Purge jacket is epoxy glass,
Shuttle (7.2 ftr) tank Teflon coated. Insulation
Application is multilayers. 100 Space
Technology) Shuttle flight cycles

2. He/N2
Double
Purge

External
Polyure—
thane
Foam Non-
integral
Tank

External
Polyure~
thane
Integral
Tank

Internal
Poly-
urethane
Foam

No (Orbital
Application
Technology)

No (Apollo
Flight
Program)

No (Apollo
Flight
Program)

NAS 3=4199, 2.1 m
(6.9 fr) tank

Saturn S-1I Stage,
10 m (33 ft) dia.

Saturn S-1IVB Stage
6.7 m (22 fr)
dia.

demonstrated with LHZ'

Used helium purged fiber-
glass substrate, nitrogen
filled mulrilayers. Simu-
lated one ground hold,
launch, orbit flight cycle
with LHj;. Thickness of He
to N> layers must be con-
trolled accurately to pre-—
vent Ng liquefaction.

Polyurethane foam sprayed
on, machined, covered with
polyurethane sealer. Con-
ductivirty rises with time
due tc displacement of blow-
ing gas witn air. Flight
demonstrated.

Glass fiber reinforced foam
tiles, individually bonded,
fiberglass polyurethane
resin liquid barrier (GHp
filled); 135 thermal
cycles.

PRECEDING PAGE BLANK NOT FILMED
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TABLZ 3l.

~ Continued.

Applicable Development

Candidate Reusable
Insulation System
Systen Design? Demonstrated on: Comments

6. PPO - This combination
Internal has not been
Foam/ demonstrated. See
Poly- comments on Sys-—
urethane tems 3 and 7.

External
Foam

7. PPO Yes (Space NAS 9-10960, Individual tiles bonded to
Internal | Shuttle 1.75 m wall. Conductivity higher
Open Cell | Technology) (5.8 ftr) tank than GHy, varies with
Foam orientation. 100 Space

Shuttle flight cycles
demoastrated with LHZ‘

8. Honeycomb | Yes (SST NAS 3-12425 GH, filled insulatiom.

Gas Layer | Methane Tank |NAS 8-25974
Barrier Technology;

Space Shuttle

Technology)

9. Rigid Yes (Space NAS 3-14369, 2.6 m|{Aluminum honeycomb rigid
Vacuum Shuttle (8.7 ft) dia. vacuum shell with aluminum
Shell System Tank face sheets. Shell col-

Technology) lapsed after cycling

29 times due to peeling of
inner face sheet. External
face sheet should be made
vacuum seal to prevent this.
Problems making sysgem
vacuum tight to 107° torr.
The presence of the closed
cell foam, as indiczted in
Table 30, would create
difficulty in maintaining
the prescribed level of
vacuum due to outgassing.
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TARLE 31. - Continued.

Applicable Development

Candidate Reusable
Insula%ion System
System Design? Demonstrated on: Commments

10. Micro- Yes (Space NAS 3-17817 1.2 m | Stainless steel jacket,
spheres Tug System (3.9 fi) dia. 0.008 em (0.003 in.) thick,
with Technology) Tank has demonstratgd vacuum in-
External tegrity to 107~ Torr. None
Flexible of 23.2 m (76 ft) of resis-
Metal tance seam welds leaked.
Jacket Test program demonstrated

13 flight cycles using LN,
with no change in thermal
performance. Microspheres
have been lcaded compres-
sively in a flat plate

100 times with no change
in thermal performance.

11. Micro~ Yes (LH? air~|This design modi-
spheres craft appli- |fication to Sys—
with cation tem 10 has not
Internal | technology) |been demonstrated.

Liner

12. Silica Yes (Space Properties of
insula-~ Shuttle insulation have
tion with | high temp- been determined.

Internal erature Liner has not
Liner ingulation) been demonstrated.

13. Self-~ No (Orbital |NAS 3-6289, 0.8 m | Leaktight shingles were not
evacuat- | Application (2.5 fc) obtained; sealing strips
ing Technology) calorimeter tank. | opened upon thermal cyzling.
Shingles This system did not perform

as designed; requires
further development.
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TABLE 31.

- Concluded.

Applicable Development

Candidate Reusable
Insulation System
System Design? Demonstrated on: Comnents

14, Self- This combination
evacuat- has not been
ing demonstrated. See
Honeycomb/ comments on Sys-—

Foam tems 3 and 15.

15. Self- No (Orbital | NAS 8-117470.8 m [Conductivity of horeycomb
evacuat- jApplication | (2.5 ft) degraded with nurber of LHp
ing Technology) | calorimeter tank. |cycles (up to 14) as gas
Honeycomb/ permeated the honeycomb.
N, Purge. Had problems with nitrogen

purge gas liquefying in the
multilayers (Honmeycomb sub-
layer should have been
thicker).

7.1.3 Concept screenin

aspects:

Safety

s Malfunction

e Leak detection

tion concept was analyzed with regard to safety,
and operational requiremcnts.

rocedure. — In the concept screening, each insula-

performance, producibility

These analyses considered the following

e Flammability and toxicity

e Inspectabilitry

Performance

® Heat input to fuel (evaporated and vented)

e Weight and volume

s DOC
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Producibility

e Approach

e Development and Manufacturing Requirements

Operations

e Inspection, Maintenance, and Operational Requirements
o Life Expectancy

Results of these studies were then compared to rank each concept so
that the four most promising could be selected for mcre detailed study.

7.1.3.1 Safety analysis: The safety analysis considered four major aspects.
These ware evaluared against the criteria shown in Table 32 and a numerical
weighting facter assigned to each. The parameters considered under the mal-
function testing included the type of failure (e.g., vacuum jacker leakage),
the condition resulting from this failure, its effect on flight operation

and aircraf: safety, and protective measures that could be provided to over-
come or minimize the failure effect. The problem of GHj leakage from the
tank was examined in terms of the ability to detect leakage into the insula-
tior, and into the airframe interior in the case of a nonintegral tamk. A
second aspect of the safety analysis considered the potential for removal

of hydrogen or inerting of the system duriag aircraft operation, as well as
wher it is necessary to enter the fuel tank for inspection or repair. Flam-
matility of the materials used in the system, and the possible toxic products
resulting from combustion of a material were included in the third category
of the safety analysis. The final aspect was how the system designm affects
the capability to inspect for tank wall or vapor barrier leakage.

For purposes of comparison, numerical ranking factors were assigned to
each individual parameter. A value of four signifies maximum importance
with smaller values indicating considerations of lesser impact on aircraft
and passenger safety. The ranking scale was selected to give an acceptatle
value of resolution for comparison between concepts and was consistent with
the level of analysis in this screening operatiom.

7.1.3.2 Performance analysis: The procedure followed ir developing perfor-
mance data for each system in the concept screening phase was to compute

the amount of fuel evaporated during flight and ground segments as a function
of insulation thickness. From the weight of fuel required to fly the design
mission, plus allowance for necessary reserves, the required fuel load (the
weight of liquid + evaporated fuel) and subsequent tank volumes were computed.
Fuel containment system dry weight and fuselage length requirements were them
calculated. These parameters, together with total fuel and ground vent loss
weights, were then used to calculate DOC as a function of iasulation thick-
ness. Optimum thickness was selected as that corresponding to the minimum
DOC, as obtained graphically from the DOC versus insulation thickness
results.
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TABLE 32. - SAFETY RANKING CRITERIA
Criteria Ranking Weight#*
Malfunetion
Barriers

e Permeability and leakage 4 (mixing of HZ and air)

4 (LDZ) For Each
. Consideration
® AP and flow direction 2 (Hz)
2 (Air)

e ZEffect of thermal cycles 3

o~

® Resistance to accidental
penetration

Active systems 3
Leax detection and control

Time 1
Sensitivity 1
Safe removal in service 3
Safe removal for tank 1
inspection
Flammability and toxicity 2
Inspectability
Tank 1
Barrier 1

*4 = Maximum importance:
Total of 44 = Maximum safety

7.1.3.2.1 Fuel tank geometry: As stated earlier, the aft tank of the air-
craft was used as a basis for both the screening and preferred candidate
an2lysis phases. The general configuration of the tank and its geometric
relationships which were assumed for Preliminary analysis purposes are
illustrated in Figure 87. Solutions to the relationships between required
volume and insulation thickness and the tank length and forward diameter
parameters are represented in Figures 88 and 89, These graphical relation-
ships were used in the iterative process of tank sizing as a funcrion of
insulation system heat transfer characteristics and the correspounding thick~
ness of the candidate insulation system.
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Figure 88. —~ Tank diameter Dl vs tank leagth £.

7.1.3.2.2 Thermal analysis: The thermal model used in the concept screening
phase was developed as a closed form type of so’ution which considers the

heat transfer in both liquid and vapor phases ).esent in the tank as a func-
tion of liquid fracticu, vapor and liquid-wetted wall heat fluxes, exterior
temperature, and tank wall and insulation thermal properties. Net heat input
to the liquid (and vapor generation) is a funcrion of heat transfer across

the liquid wetted porticn of the tank wall, the liquid/vapor interface, along

* ~ tank wzll frou the ullage to liquid regior, and radiation from the ullage

1 ~ ‘on of the :© 1k wall to the liquid. The model is illustrated in Figure 90.
Der. -atios r” ::. odel for wall and vapor heat transfer tc the liquid is

press-—_ _- . : «>. -dix C.

Ven~ - - -e calculated for a constant vent pressure of 145 kPa
{21 psic. differential equation includes variable thermodynamic prop-
ercies for t.:: .iquid aad vapor as well as for the insulation and tank wall.

Radiatior heat input to the ligqnid surface was computed as a function of
average ullage region wall temperature for each of three areas corresponding
to equal area times view factor products. Interior tank wzil and liquid
surfaces were assumed to be grey and to have absorptances of 0.3 and 1.0,
respectively.
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Figure 89. - Tank length ¢ vs volume and thickaess.
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Figure 90. - Thermal model used for concept screening.

The major uncertainty in the thermal analysis, which also appiied to the
preferred candidate analysis, was the definition of the vapor-wall Nusselt
number. This parameter governs the wall temperature distribution opposite
the vapor and the subsequent mean vapor temperature. A thorough search of
the literature did not reveal a satisfactory correlation for a non-isothermal
wall exposed to a non-isothermal fluid for low Prandtl numbers (i.e., H
vapor). Consequently, initial studies were conducted varying the Nusselt
number from a conduction dominate situation (Rayleigh Number < 6 x 103) ro
a turbulent boundary layer condition (RA 2= 108). Change of this parameter
resulted in a very significant variation in vapor-wetted wall temperature
distributions. As an example, the temperature of the top of the tank for
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a 50 percenr uilage condition showed a variation from 185°K to 28°K as the
Nusselt number was varied by a factor of 400 (going from a condition of highly
strarified vapor to a turbulent boundary layer). The heat rate to the

liquid decreased as the Nusselt number was increased to approximately 10 times
the conduction limit. Further increase in Nu resulted in an increase in
liquid hea: rate. The initial decrease is due to lower conduction heat
transfer along the tank wall, a smaller vapor-liquid temperature difference
ané a decrease of radiation from the vapor space wall to the liquid. This i3
the result of the enhanced heat transfer between the tank wall and the vapor
which reduces the total heat into the liquid because of the removzl of a
greater fraction as sensible heat of the vapor, i.e., higher vapor exit rem-
perature. Tatle 33 illustrates the influence of vapor-vail Nusselt number

on mass of fuel vented for a 50 percent iiquid level with a liquid-wetted

wall heat flux of 97.7 W/m (31 Btu/hr £t°)

The experimental data found in the literature which could be used for
correlation of the vapor-wall Nusselt number were very limited. Schalla
(Reference 8) reported the results of heat transfer testing on a small diameter
(1.27 m (50-1in)) liquid Lydrogen tank. His vapor-wetted tank wall temperature
data were used to correlate Nusselt number using the screening model. For
the test tank, the best correlation of predicted and measured temperatures
as a functicz of liquid level was obtained for a Nusselt number of approxi-
zately 17 which corresponds to a laminar condition. This comparison is

TABLE 33. - EFFECT OF VAPOR NUSSELT NUMBER ON HEAT INPUT TO LIQUID
[50% LIQUID LEVEL, q, = 97.7 w/m? (31 Bru/hr/£e2))

2X &X 40X 110X
Nu Conduction | Conduction | Conduction | Conduction | Conduction

Average Wall gK 153 123 96 46 33
Temperature ( R) (276) (221) (173) (83) (59)
Vapor Exit 9K 33.3 38.3 42.2 38.9 32.2
Temperature (°R) (60) (69) (76) (70) (58)
Ratio of Mass 1.0 0.926 0.878 0.939 1.080
Vented*
Ratio of Vent i.0 1.287 1.505 1.366 1.059
Gas Sensible
Heat*
Heat into Taak 884 896 910 919 938
W (B8tu/hr) (3017 (3059) (3107) (3139) (3202)
Heat removed 219 281 326 295 216
by vented Gi (7¢7) (959) (113) (1007) (736)
W (Btu/hr)

*Compared to Nusselt No. coiresponding to highly stratified gas.
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shown in Figure 91 where tank top surface temperature is plotted as a func-
rion of Nusselt rnumber for various liquid levels. The dashed line represents
the best fir of the experimental data corrected for a 290°K outer surface
temperature. Computed and measured liquid heat rates are compared in Fig-
ure 92 as a function of liquid fraction. Because of this reasonable correla-
tion with the experimental cdata a Nusselt number of 17 was employed to gen-
erate tank wall temperature distributions and liquid heat rates for the
concept screening phase.

Computation of design mission fuel loss for four insulation thicknesses
for each concept was performed using the followiag procedure. Initial tank
sizing to determine heat transfer area was based upon the liquid hk-at input
for a 90 percent full tank under cruvise conditions. This tank size was
used to compute fuel losses for seven segments of a 24-hour period having
fuel withdrawal increments, ambient temperatues, and times as shown in
Table 34. An initial tank pressure of 145 kPa (21 psia) and a minimum allow-
able pressure of 124 kPa (18 psia) was assumed for the mission. At low heat
rates it may be necessary to vaporize some fuel to maintain the minimum
pressure level in the tank. By successive iterations the tank size and
fuel loss converged to give the correct tank dimensions for the design nis-
sion fuel requiremenz. Transient conditions were accounted for by computa-
tion of the time constant for each insulation using a stepwise ambient temper-
ature change from ground to cruise and proportioning the cruise and ground
segment (5 and 7) into two ambient temperature conditions. This resulted in
a gross approximation of heat storage within the system.

7.1.3.2.3 Thermal properties: The temperature dependent properties required
for the thermal analysis of the concepts, and the sources from which the
data were obtained, are as follows:
e Hydrogen -~ Liquid and vapor phases

e Density

e Compressibility

e Vapor pressure

e Thermal conductivity

e Specific heat

e Latent heat of vaporization

e Viscosity

e Sonic velocity

Properties data were taken from Reference 9.
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Figure 91. - Correlation of tank top surface temperature with Nusselt
number for various liquid levels.
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COMPUTED
Ny =17

0.2 |— @® DATA FROM REF. 8

0 i ] L | I 1
0 0.2 0.4 0.6 oe 1.0
. LIQUID FRACTION, F

Figure 92. - Comparison of measured and computed liquid heat rate ratio as
a function of tank liquid fraction.

e Tank and Fuselage - Aluminum - 2219 alloy for tank and 2024 alloy
for fuselage

e Density (Reference 10)
e Thermal conductivity (Reference 1l1l)
e Specific heat (Referemnce 10)

® Insulations -~ Where available, data were taken from the literature
for the specific material. Io cases where data were oot available,
the properties were estimated using those of similar materials.
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TABLE 34. - MISSION FUEL SCHEDULE - AFT TANK

Fuel Ambient
Time (hr) withdrawal Temperature

Segment Segment Total kg 1b °x %2
1. Ground, After 0.283 0.283 0 0 290 522

Fueling,

Eangines Off

(a)
2. Taxi 0.233 0.516 35.4 78 290 522
3. Takeoff 0.0817 0.598 221 487 290 522
4. Climb 0.743 1.341 1,086 2,394 290 522
5. Cruise 10.273 11.614 10,466 23,073 222 400
6. Descert-Land 0.383 11.997 178 393 222 400
7. Ground 12.003 24,000 (b) 290 522
(a) APU Fuel not Included
(b) Approximately 1134 kg (2500 1b) of fuel remain in aft tanmk at start

of assumed out—of-service period.

® Density
e Thermal conductivity

e Specific heat

Sources of property values used for each concept are given in

Table 25. For the external foam, LI900, and microspheres, the data
shown in Figure 93 were used for thermal coanductivity values. In
the case of polyurethane a composite of the data for densities from
27 to 35 kg/m3 was used to derive an effective thermal conductivity.
Only a single data point at ambient temperature was available for
the Rohacell foam. As it falls on the curve for PVC foam, Figure 93,
these data were used to represent the temperature dependent con-
ductivity of Rohacell. Because of the long aircraft lifetime and
the capabilicy of hydrogen to permeate such materials, the thermal
conductivity of the intermal polyurethane foam in system 5 was con—
sidered as a GHy filled foam for this amnalysis. For the two purged
systems, numbers 1 and 2, thermal conductivities were taken to be
those of the specific purge gas, assuming the contribution of the

low density glass batt material to heat transport was insignificant.
(Reference 10)

219

e e e A e et - i n il o e - 1 - I

>

et

i e B o A



TABLE 35. - DATA SOURCES FOR PROPERTIES OF INSULATION CONCEPTS
Concept Property and
Number Material Data Source
1. He-filled fiberglass Thermsl conductivity and speci-
fic heat; Ref. 10
2. He and Np-filled fiberglass Same as No. 1
3. .4, Rohacell foam Thermal conductivity; cee
Fig. 93, extrapolated using
PVC data. Specific heat; Ref. 12
for polyurethane
5. Internal Polyurethane Density and thermal conductivity
foam, 3D reinforced for GHZ filled condition; Ref.
5-9. Specific heat from ratio
of foam and glass reinforcement
Refs. 10 and 12
© 6. Internal PPO plus external Density and thermal conductivity;
Polyurethane foam PPG, Ref. 5-10; Polyurethane -
see Fig. 93. Specific heat;
PPO assumed same as Polvurethane -
Bef. 12
7. Internal PPO foam See No. 6
B. Internal gas-filled Density and thermal conductivity;
honeycomb Ref. 14 and 15. Specific heat;
extrapolated using ratios of
constituents and Ref. 12
9. Polyurethane foam See Tig. 93, 32 kg/m3. Specific
heat; Ref. 12
10., 1l.| Microspheres Density and thermal conductivity;
Ref. 16. Specific heat; Ref. 10
12, LI-900 Density, thermal conductivity
and specific heat; Ref. 17
13. Self-evacuation shingles Density and thermal counductivity,
Ref. 18. Specific heat, estimate
using ratio of constituents,
Refs. 10 and 12.
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TABLE 35. - CONCLUDED.

Concept Property and

Number Material Data Source
14. Self-evacuated honeycomb plus Density and thermal conductivity:
Polyurethane foam Polyurethane foam - see Fig. 93,

32 kg/m>; honevcomb, Ref. 19.
Specific heat estimated using
ratios of components; Refs. 10
and 12

15. Self-evacuated honeycomb See No's. 2 and 14

plus GN, purged fiberglass

e Purge Barrier/Vapor Barrier/Vacuum Jacket — Two types of vapor bar-

riers were considered for use with closed cell form insulations to
prevent infusion of air or hydrogen. One was a simple plastic sheet
such as mylar or Kevlar. The other was a multilayer sandwich called
MAAMF, which consists of the following:

Layer Material Description
1 0.5 mil Mylar, Type A
2 Adhesive
3 0.5 mil Aluminum Series 1100.0 Foil
4 Adhesive
5 0.5 to 1.5 mil Aluminum Series 1100.0 Foil
6 Adhesive
7 0.5 mil Mylar, Type A
8 Dacron or Glass Net Fabric

The total th%ckness is 5 to 6 mils and it weighs 0.225 kg/mz
(0.046 1b/ft*).
Thermal conductivity of the vapor barriers and the thin (5 mil)
stainless steel vacuum jacket was not considered because the thermal
resistances introduced by these components is negligible. Thermal
conductance of the honeycomb composite rigid vacuum shell was com—
puted using both composite and aluminum core conductance data from
Reference 22, together with overall thermal resistance data of Ref-
erences 23 and 24 to account for the resistance of the adhesive
bonded core-to-face sheet interfaces.
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Specific heat data were used in the transient program for evaluation
of the preferred candidates. For the stainless steel vacuum jacket
data were taken from Reference 10. Vapor and purge barrier specific
heats were caiculated from the specific heats of the constituents

of each material weighted by the mass fraction of each in the total
composite.

7.1.3.3 Producibility analysis: A prelimirary producibility analysis was
made for each concept to identify development items, potential fabrication
and assembly procedures, and specialized manufacturing Inspection require-
ments. These analyses were made to obtain an order of magnitude estimate
of development and production costs which could be translated into DOC
increments.

7.1.3.t Operations analysis: The operations analysis was conducted to
define projected maintenance and inspection requirements. Items requiring
service were identified and frequencies of inspection and servicing were
postulated. These analyses were conducted at the lowest level which would
provide a relative comparison between systems.

7.1.4 Screening results. - The 15 candidate fuel tank insulation concepts
were subjected to the screening analysis. They represented 12 basic types,
3 of which had 2 var‘ations each. The objective was to provide a basis on
which recommendations could be made for two concepts to be evaluated as

preferred candidates for use with integral tanks and two for use with non-
integral tank designs.

7.1.4.1 Safety: As outlired in 7.l1.3.1, the safety analysis was a four-
step process. First, a walfunction analysis was performed to determine

if any of the systems had failure modes that were dangerous to life on air-
craft. The details of the malfunction analysis are given in Appendix E.
Second, requirements for hydrogen detectors were established. Third, an
assessment of flammability and toxicity was made. Fourth, the ability to
perform inspections of barriers and tank structure was evaluated.

The results of the evaluation of each concept with regard to the safety
criteria (Table 32) are presented in Table 36. Urder each specific criteriocn,
the concepts are ranked in order of decreasing merit. Numerical ranking
weights were assigned at each level within a category, based upon the maxi-
mum value which corresponds to the importance of the specific consideration.
For example, in the category of permeability to gases to allow mixing of
air and Hy, concept 4 was assigned a value 4, concept 2 a value of 3 and
concept 5 a value of 1. The summarion of the category ranking values was
then converted to a scale of 0 to 100 to yield a relative ranking of all
systems. The resulting composite ranking is presented in Table 37.
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TABLE 36. — RANKING OF CANDIDATE INSULATION SYSTEMS BASED ON SAFETY CRITERIA
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TABLE 37. - SUMMARY OF SAFETY RANKING
Concert Ranking Score(a)
11, 12 89
10 84

9 80
7, 8 78
3, «® 77
2 75
1 74
5 73
15 70
14 56
6 ' 564
3, &) 49
13 42
(2)

100 = maximum possible
(b)MAAMF is used as vapor ba
(C)Plastic film is used as v

rrier

apor barrier

Insul

ation Concept Number/Type

1.
2.
3.
4.
5.
6.
7.
8.
9.
10.
1i.
12.
13.
14,
15.

GHe Purged FG

GHe~-GN2 Purged FG

Ext. Foam, Nonintegral
Ext. Foam, Integral
Internal PU Foam

Int. PPO, Ext. PU Foams
Int PPO Foam

Int. Perf HC

Rigid Vac Shell

Ext. Microspheres

Int. Microspheres

Int. LI 900

Self-Evac. Shingles
HC/Foam

HC/GNy Purged FG
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Considering safety alone, concepnts 2, 3, 9, and 10 would be the choices
for the nonintegral tank design, and concepts 4, 7, 11, and 12 the choiecas
for the integral design.

7.1.4.2 Performance: Results of the thermal performance studies are tabu-
lated in Table 38 for each system. The values presented are those for the
insulation thickness giving the minimum DOC as determined graphically from
a plot of DOC versus insulation thickness. Weight and volume statements
were then recalculated for the thickness corresponding to minimum DOC.
Ranking of the concepts based upon DOC is shown in Table 39. The table also
shows fuel weight and fuel velume fractions as dimensionless parameters
normalized to the values calculated for the baseline system, concept no. 4.

The values of DOC are based upon consideration of both £light and
ground fuel losses. A comparison between DCC calculated in this manner and
that calzulated for flight loss only is given in Table 40. The only impact
consideration of flight boiloff alone has on the ranking is that nos. 6 and 9
change positions, no. 6 ranking higher than no. 9.

On the basis of DOC, concepts 4, 14, 11, and 12 remain as logical choices
for the integral tank design and concepts 13, 10, 3, and 15 for the nonintegral
tank. .

7.1.4.3 Producibility and operational: A preliminary producibility amalysis
was made for each candidate system to identify development items, potential
fabrication and assembly procedures, and inspection requirements following

or during fabrication as shown in Table F~1 of Appendix F. All systems

appear feasible to fabricate although a much more detailed analysis is
required, particularly around tank penetrations. From the data in the
Appendix, cost differences were developed between the 15 insulationm candi-
dates for the develcupment and manufacture of the insulation systems. When

the difference in costs is expressed as a percent of direct operating cost

per seat nautical mile, it varies up' to only 0.2 percent between 14 of the
systems. For the other system, no. 9, the percentage increased up to 0.4 per-
cent over the lowest cost system. These cost differences have a minor impact
on a selection of a candidate inmsulation system. For example, a development
cost of 10 x 106 dollars spread over 350 aircraft having a l4-year lifetime
and operated 350 days per year represents a DOC increment of 1.6 x 107%¢/S km
(3 x 10~%¢/S n.mi.). Thus, a 0.4 perceat range in these costs is imsignificant
to DOC. No DOC figures were calculated for preduction costs in the concept
screening phase because of the scope of tlie analysis that would be required to
obtain valid data for the many systems involved.

Estimates for inspection, maintenance and operational requirements of
the systems are showm in Table F-2, Appendix F. From these requirements,
the magnitude of direct operating costs was estimated assuming a labor cost of
$25 per man hour. The estimates vary from 0.000 27 to 0.000 05 ¢/S km (0.6005
tec 0.0001 ¢/S n.mi.}.
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TABLE 40. - IMPACT OF GROUND BOILOFF (RECOVERED) ON DOC

DOC ¢/S km (¢/S n.mi.)

Ground Boiloff Ground Boiloff

Insulation Concept Number/Iype Not Included Included
1. GHe Purged FG 1.0745 (1.9399) 1.0822 (2.0043)
2. GHe-GNj Purged FG 1.0366 (1.9197) 1.0448 (1.9349)
3. Ext. Foam, Nonintegral 1.0083 (1.8674) 1.0161 (1.8818)
4, Ext. Foam, Integral 0.9787 (1.8126) 0.9864 (1.8269)
S. 1Intermal PU Foam 1.055) (1.9540) 1.0778 (1.9961)
€. 1Int. PPO, Ext. PU Foams 1.0036 (1.8587) 1.0187 (1.8866)
7. Int. PPO Foam 1.0522 (1.9486) 1.0722 (1.9857)
8. Int. Perf. HC 1.05403 (1.9267) 1.0542 (1.9524)
9. Rigid Vac Shell 1.0075 (1.8659) 1.0084 (1.8675)
10. Ext. Microspheres 1.0017 (1.8551) 1.0062 {(1.8635)
11. Int. Microspheres 0.9839 {1.8221) 0.9873 (1.8284)
12. Int. LI 900 0.9950 (1.8428) 1.0006 (1.8531)
13. Self-Evac. Shingles 0.9857 (1.8255) 0.9893 (1.8322)
i4. HC/Foam 0.9803 (1.8156) 1.0004 (1.8528)
15. HC/GN2 Purged FG 1.0193 (1.8877) 1.0238 (1.8961)

LY

A3 in the case of evaluating differences
differences are too small to be meaningful in
preferred concept.

in production cost, these
influencing selection of a

There are not sufficient data for any of the imsulation systems to quan-
titatively predict their useful life for an aircraft flying 350 times a year

for 14 years (4900 thermal cycles).

However, based on the limited test

data available and characteristics inherent in their design, a qualitative
ranking was made as shown in Table F-3 of Appendix F. The concepts were

ranked as 1, 2 or 3 with 1 having the longest projected life system. Con-
cepts 1, 2, 6, 7, 8, 10, 11, and 12 are ranked the highest with 3, 4, 5, 9,
14, and 15 falling into the middle category.
insufficient information is zvailable at this time to make more than a very
tentative judgement of this criterionm.

[ s

It must be emphasized that
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7.1.5 Selection of preferred candidates. - The selection of the concepts to
be evaluated as preferrad candidates was made primarily on the basis of
rankings from the safety and performance results. Analysis of producibility
and operations did not yield any quaatitative informationm which would influence
the selection. At this stage of development all concepts appear to be feasji-
ble in these regards. and qualitative estimates of DOC increments due to dif-
ferences in producibility and operations aspects do not result in any large
percentage variations between concepts.

Initially, four candidztes for each tank concept (integral and nonintegral)
were selected on the basis of DOC. Candidates numbers 4, 14, 11, and 12 were
selected for the integral tank. For the nonintegral design, numbers 13, 10,
3 and 15 were selected. These were then compared with a ranking of safery
criteria to arrive at the final candidates for each tank concept. Candidates
15, 14, and 15 were eliminated on the basis of poor safety rankings and the
fact that satisfactory performance has never been demonstrated in prior
developrment programs. For example, an airtight seal has never been main-—
tained on concept 13 and a leaktight honeycomb construction could not be
achieved for multiple cyclic exposure with concept l4. Candidate 15 was
also eliminated on the basis of the consideration of failure of previous
development efforts to demonstrate satisfactory leaktight construction
techniques with honeycomb substrates for cryogenic tanks.

Recoumendation of the five remaining concepts was made to NASA. As a
result of discussions, Lockheed and NASA mutually agreed to include concepts
3 and 4 with the substitution of modified versions of 9 and 11 for nonintegral
and integral tanks respectively. Concept 9 was substituted for 10 in order to
include the hard vacuum system in the final evaluation. Further, concept 11
was modified to place the insulation exterior to the tank. The external
vacuum jacket was protected with a composite formed by an exterior aercdynamic
fairing and a flexible foam layer between the fairing and the Jjacket. The
disadvantages of the originzl design for concept 11 were (1) the use of honey-
comb for the fuel tank structure, (2) making the 5-mil stainless steel jiiner
LHy leakproof, (3) fabrication difficulties, and (4) the reduction of allowable
stresses in the tank structure due te the warm tank. It was felt that the new
concept presented a more reasonable approach and would minimize operational
and production problems.

In summary, the concepts approved for the preferred candidates analysis
phase were:

e Candidate A (concept 3): Nonintegral tank - external foam.

e Candidate B (modified concept 9): Nonintegral tank - hard shell
vacuum jacker.
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e Candidate C (concept 4): Integral tank - external foam.

e Candidate D (modified concept 11): Integral tamk - external
microspheres.

Descriptions of these systems are givem in 7.1.6.

7.1.6 Analysis of preferred candidates. - Parametric thermal analysis studies
were conducted to develop fuel loss and required tank volume as a function

of insulation thickness for each candidate. These data were then translated
into DOC for design optimization.

Two different methods of thermodynamic analysis were used for the con-
cept screening and preferred candidate phases of the program. As described
in 5.1.2.3, for concept screening a closed forn steady-state sclution was
used to compute heat inputs as a function of tank liquid fraction. These
inputs were modified by a heat storage term applled in 2 stepwise manner to
give a pseudo-transient result which followed a seven-segment mission profile
for exterior temperature and fuel fraction.

Analysis of the preferred candidates was done in a manner to represent
a true transient condition using a finite difference program which followed
the specified design mission using inputs of Mach number, altitude, znd
rate of fuel usage in steps of S5-minute time intervals. In addition to the
normal flight mode, a subroutine was included to simulate the effects of
severe flight turbulence by assuming complete liquid disorientation and
wetting of the inner tank wall, so that the liquid, vapor and inner tank
wall reach an equilibrium temperature. The stratification process then
resumes following this simularion of a severe, short-term flight disturbance.

7.1.6.1 Description of candidates: The four insulation candidates, selected
with NASA concurrence, are:

e Candidate A - Nonintegral fuel tank with an exterior rigit closed-
cell foam insulation system using the MAAMF vapor barrier concept.

e Candidate B - Nonintegral fuel tank with a hard shell vacuum
jacket; 1.27 em (0.5 inch) of rigid closed-cell foam located at
tank wall to prevent air liquefication in event of external leakage
into vacuum space; aluminized Mylar bonded to interior surface of
jacket and exterior surface of foam to raduce radiation heat transfer.

e Candidate C - Integral fuel tank with rigid closed cell foam
primary insulation; open-cell flexible foam exterior to primary
insulation vapor barrier (MAAMF concept) to accommodate dimensjiomnal
changes and support exterior fairing.
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© Candidate D - Integral fuel tank with external evacuated micro-
sphere insulation having flexible metal vacuum jacket; open-cell
flexible foam located exterior to flexible vacuvm jacket to support
fairing.

Cross-sectional views of the four systems are shown in Figures 94 through
97 with the appropriate fixed dimensional properties and component specific
weights and densities.

7.1.6.2 Thermal analysis of preferred candidates: The model used for thermal
evaluation of the four preferred insulation system candidates was a transient
computer program, THERM. The THERM Thermal Analyzer Program, described in
Appendix D, solves transient heat flow problems by use of a forward finite-
difference algorithm for solving an analogous resistance-conductance (R-C)
electrical network. It is structured te allow maximum flexibility in describ~
ing energy transport phenomena unique to a specific application. This pro-
gram computes the tank pressure and vapor vent rates (including vapor required
for pressurization) as well as the transient temperature distributions in the
tank walls, in the insulation systems, and in the liquid and vapor components.
The model uses the design mission fuel flow schedule (Appendix A), and the
environment temperatures during flight are from Standard Atmosphere Tables
(Reference 25). The program models both integral and nonintegral tanks.
Thermal conductivities and specific heats of the tank wall, insulation sys-
tem materials, anod the hydrogen liquid and vapor are specified as a function
of temperature throughout the model.

In the thermal model, the liquid and vapor volumes are divided into 9
and 10 horizontsl layers, tespectively, as shown in Figure 98. The liquid/
vapor interface is at the saturation temperature, Tg, corresponding to the
tank pressure. Located opposite each liquid and vapor node are a tank wall
node, three insulation nodes, and two outer structure nodes for the aircraft
fuselage or exterior fairing.

The liquid volume consists of eight nodes of increasing thickness down
from the surface in the temperature stratified layer of the upper LH; region.
The ninth and bottom liquid node corresponds to the uniform bulk liquid
temperature, Tg, layer at the bottom of a strarified tank that experiences
some degree of bottom heating. The transient stratification analytical model
of Reference 26 is used in this program. It was modified to account for
the changes in the liquid level that occur during the simulated flight mission.

The vapor volume consists of 10 horizontal layers ia which conductionm,
convection, mass flow and radiation effects between the nodes and their
surroundings are modeled. The mass, volume, temperature and pressure of
the vapor are computed from liquid/ullage coupling models that consider the
thermodynamics of the two modes of tank pressurization and venting. One mode
is represented by a closed tank, self-pressurization model; while the second
mode is represented by a constant pressure, continuous tank venting model.
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Figure 98. - Tank insulation and vent model for analysis
of preferred candidates.
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This program has the ability to switch bertween the two tank pressurization
and venting modes depending upon the tank hear input, LHp fill level, liquid
hydrogen withdrawal rates, erc. In this program a severe flight disturbance
that would completely mix the stratified liquid, che vapor, and wet the

tank walls, can also be simulated. Following this instantaneous event, the
liquid restratifies and the tank self-pressurizes and/or vents.

In operation of the program an initiazl estimate is made of required
tank volume for a given insulation thickness, based upon the results of the
concept screening analysis. Using the cutput data from the first computer
run an iterative prccedure is then used to obtain convergence of volime
in terms of mass of liquid evaporated. Basic output of the program is node
temperatures, liquid and vapor mass and volume fractions, vented aud evapo-
rated masses and ullage pressure in 5-minute time steps.

The major output parameters of the thermal analysis which were used to
evaluate the concepts are:

e Fuel evaporated and fuel vented during flight
e TFuel evaporated during ground hold and filling
e Fuel tank ullage pressure during flight

e Temperature distributions of tank wall, insulation and outer
structure

e Vent rate during filling

Additional analyses were conducted to assess the benefit in terms of fuel
loss of operating at higher tank pressures, 207 kg (30 psia) and 276 kPa
(40 psia). These were done for candidate C only. Also, the effects of air
and hydrogen leakage into the vacuum spaces of candidates B and D were
examined in limited depth.

7.1.6.2.1 Fuel losses: The fuel losses associated with the filling, flight,
and ground hold portions of the aircraft mission were computed for each
candidate. Insulation thickness was the variable for candidates A, C, and D.
Five different values were examined. Since geometry is fixed for candidate B,
losses were computed for the nominal vacuum space pressure of 1l x 1074 Torr,
and for values an order of magnitude above and below (103 and 10-5 Torr).

In addition, an emergency condition of 760 Torr, corresponding to loss of
vacuum was also calculated. The loss terms are fuel evaporated during flight
(vented plus amount required for tank pressurization), fuel vented during
flight, and fuel vented during fill and ground hold.
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Fuel losses as a function of insulation thickness are shown in Fig-
ures 99 through 101 for candidates A, C, and D, respectively. Table 41
presents fuel loss data calculated at ezsch insulation thickness. Overall
system thickness, (t), is defined as the distance from the interior of rhe
tank wall to the exterior of the fuselage. Primary and total insulaticn
thicknesses are denmoted by tj, and tj, respectively. Vacuumn influence on
fuel loss for candidate B is also given in the table. Comparing the rigid,
closed cell foam candidates, A and C, it is seen that equal thicknesses of
insulation give nearly equal fuel loss data. This is as anticipated because
the primary insulations are identical and the secondary foam wrap for C has
a thermal conductivity close to that of the primary material. On the basis
of system thickness, t, however, C is much more effective from a volume
standpoint.

A comparison between candidates C and D shows thac the latter is a more
thermally efficient concept. Although the microspheres have nearly twice
the bulk density of the rigid foam (69 versus 35 kg/m3), for an equal weight
insulation the microsphere concept, D, shows appreciably lower fuel losses.
As an example, with 5.08 cm of rigid foam for C, the flight and ground
losses are 537 and 780 kg, respectively (per tank). For D at 2.54 cm thick-
ness of microspheres (equal weight of imsulation), the flight and ground
losses are 357 and 621 kg, respectively. This corresponds to a 279 kg saving
for non-tecoverable losses and a 317 kg reduction in recoverable loss (for
2 tanks). Candidate D is also slightly more effective on a volume basis
because of the superior thermal conductivity =f the microspheres.

Candidate B shows the minimum in fuel loss, even for vacuum space
pressures as high as 10-3 Torr. For flight conditions, little difference
in fuel loss is observed with pressure changes from 1073 to 10~3 torr. This
provides a comfortable design margin for the vacuum system. Ground loss is,
of course, affected significantly as all heat input goes to vented mass
ratner than pressurization.

For the case of the honeycomb and annulus at atmospheric pressure of
air (simulating a catastrophic vacuum failure), the evaporation rate at alti~
tude is 107 kg/hr (235 1b/hr) with a vent rate of 77 kg/hr (170 lbo/hr).
This vent rate is less than that required for fueling so no limitations are
Placed on the vent system design. Also, the 1.27 em of rigid closed cell
foam with the MAAMF barrier prevents liquefaction of air in the evear of
vacuum failure. Solidification of water vapor would of course occur at a
rapid rate at the lower altitudes.

A nonmetallic honeycoumb core (Hexcel - 3/8 in. cells HRP phenolic-glass,
baving the same specific weight and thickness as the aluminum core) was
also iavestigated for candidate B. Under normal operating conditions
(vacuum of 104 Torr) the fuel loss parameters are essentially independent
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of core conductance as the vacuum space provides the controlling thermal
resistance. Results of the syster thermal analysis comparing candidate B
with aluminum versus composite honeycomb core are:

Core Type
Aluminum Phenolic/FG
Fuel Evaporated - Flight kg 444 443
(1b) (978) (976)
Fuel Vented - Flight kg 19 18
(1b) (42) (40)
Fuel Vented - Ground kg 724 715
(1b) (1596) (1576)

Under the emergency condition of atmospheric pressure of air in the
vacuum space, the evaporation rate with the composite honeycomb core under
cruise conditions is 78 kg/hr (172 1b/hr) and under ground conditions is
109 kg/hr (240 1b/hr). Although the lower thermal conductance core reduces
fuel losses in this condition, the loss rates in either case do not present
an unsafe flight condition. The vent system is designed for the larger
vent gas mass flows experienced during filling, and the quantities of fuel
lost in flight do not significantly reduce flight duration capability.

7.1.6.2.2 Tank pressure control: A minimum design tank pressure during
flight was input into the computer program. For purposes of this analysis
a minimum pressure of 110 kPa (16 psia) was arbitrarily assumed. (Note
that a minimum pressure of 124 kPa (18 psia) was later selected as a system
design value.) If at any time tank pressure falls to this value a sub-
routine is called, and it computes the additional amount of fuel which must
be vaporized to maintain this level of pressure. This additional quantity
of vaporized fuel is added to that resulting from heat transfer to the
liquid.

For candidate B at vacuums of 1 x 10-5 and 1 x 10~4 Torr, additional
fuel vaporization was required at the end of cruise to maintain the minimum
pressure level. Without this acditional vaporization, tank pressure falls
below the winimum valize for vacuums of ! x 10-% and 1 x 105 torr, as shown
in Figure 102.

No additional vapor generation was required for the insulation thick-
nesses investigated for candidate A and C. Vapor generation was required
for candidate D at the largest value of insulation thickness; however,
this case was not viable because its DOC was not the minimum value for the
candidate.
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Using the thickness of insulation consistent with minimum DOC, analysis
of the tank pressure variation as a function of time of flight during the
mission showed that both candidates A and C vented excess boiloff continuocusly.
The result of the calculation for candidate D is plotted in Figure 103 No
venting 1s required during a period extending from 15 minutes after takeoff
until landing.

7.1.6.2.3 Tank pressure level: A separate amalysis was performed to deter-
mine the effect of higher tank pressures on venting losses. By increasing the
rtank venting pressure above the 145 kPa (21 psia) value the amount of frel
vented during filling and fiight can be reduced by using the sensible heat
capacity of the liquid. For example, as the tank is filled with liquid satur-
ated at 138 kPa (20 psia), a relatively large temperature difference exists
between the liquid surface and the bulk of the liquid. For a 276 kPa (40 psia)
vent pressure settifng, this temperature difference is 2.09°K (3.76°R) as com-
pared to a difference of 0.17°K (0.3°R) for a 145 kPa (21 psia) vent pressure.
The results of an analysis, performed using candidate C as a basis, shows
liquid temperatures as a function of time for three pressure levels in Fig-
uyre 104. The variation of ullage pressure during flight as a function of vent
pressure is shown in Figure 105. Venting occurs only during the initial
15-minute period for both 276 kPa (40 psia) ana 207 kPa (30 psia) vent pressure.
For the 276 kPa (40 psia) conuition, the ground vent loss is reduced approxi-
mately 23 percent from that for the normal vent pressure setting of 145 kPa

(21 psia). Increasing vent pressure to 207 kPa (30 psia) does not result in

a reduction in ground loss.

During filling, the fuel evaporated is 33 kg (73 1b) for the 276 kPa
(40 psia) case and 34 kg (75 1b) for a 207 kPa (30 psia) vent pressure. Fuel
evaporated and fuel vented during f£light are 317 kg (698 1b) and 13.6 kg
(30 1b), respectively, for a 276 kPa (40 psia) vent pressure. Similarly, for
a 207 kPa (30 psia) vent pressure, these weights are 311 kg (686 1b) and
15.4 kg (34 1b). These compare with 538 kg (1186 1b) and 227 kg (500 1b) for
the 145 kPa (21 psia) vent pressure condition as shown in Figure 100. The
higher vapor density in the 276 kPa (40 psia) case accounts for the slight
increase in fuel loss over that of the 207 kPa (30 psia) condition.

The effect of design pressure level om tank structural weight and overall
conclusions regarding a recommended pressure for the aircraft application are
presented in 7.2.5.3.

7.1.6.2.4 Liquid stratification: The degree of liquid stratification in the
tank during flight is small for all candidates. As shown by Figures 106 and
107, the temperature differences between the liquid ar the surface and at the
bottom of the tank is less than 0.22°K (0.40°R). During £illing, stratifica-
tion is shown to occur because in the analytical model subcooled liquid is
introduced at the bottom of the tank. However, within 100 minutes after start
of filling the stratification has essentially disappeared. Figure 106 is
representative of the candidate having the highest heat flux, and Figure 107
iilustrates a lower heat flux candidate. Because of the esseatially uniform
liquid temperature during flight, there is little possibility of a sudden
pressure reduction by mixing of the liquid as the result of a sudden maneuver
or turbulence.
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TANK A, 7.62 cm (3.0 in.} INSULAT!ON
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Figure 1C6. = Liquid temperature differences as a function
of flight time for candidate A.
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Figure 107. - Liquid temperature differences as a furction
of flight time for candidate D.
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7.1.6.2.5 FCS temperature distributions: Computed temperature distributions
for the tank wall, insulation, vapor barrier and exterior structure are shown
in Figures 108 through 113 for the four candidates. TFor candidate B, tem—~
peratures are presented for the normal operating condition and for the case
where the vacuum space is filled with air for both aluminum and nonmetallic
honeycomb cores (Figures 109 through 111). The nodal temperature data are
plotted as a function of a dimensionless dist-nce parameter relative to the
circumference of the tank wall, £/c. The top of the tank is represented by
#/c = 0 and the bottom by £/c = 1.0. Distributions are shown for liquid
fractions of 0.90, 0.50 and 0.15, with 0.50 corresponding to cruise ambient
coaditions and 0.90 and 0.1l5 at ground ambient.

The most severe temperature gradients occur in the area of the liquid-
vapor interface at the tank wall and inner insulation nodes. The maximum
gradients at these locations are given in Table 42. The maximm gradient in
the rank wall occurs at the liquid vapcr interface, and it decreases with
decreasing wall heat flux. Also, the gradient increases ¥ith decreasing
liquid level because of the higher tank wall temperatures: as the ullage
volume increases. Grad-ents shown in the insulation are for the midplane
location of the primary insulation. The exterior vapor barrier location of
Table 42 denotes the purge barrier for candidate D and the foam insulation
vapor barrier for the other candidates.

7.1.6.2.6 Emergency conditions: The effects of both GH; and air leakage into
the vacuum space of candidates B and D were evaluated from the standpoint of
heat rate to the liquid and vapor barrier (or vacuum jacket temperature for D).
A summary .. these results is given in Table 43.

For candidate B the vapor barrier temperature remains significantly
above the oxygen liquefaction temperature, 109°K (196°R), for the conditioms
of air leakage into the vacuum space. The maximum liquid heat rates for a
full tank will not result in vent rates in excess of the vent system capacity.
This calculated heat rate corresponds to an evaporation rate of 347 kg/hr
765 1b/hr). I1f a failure occurred at the midpoint of cruise, the evaporation
rate of 243 kg/hr (535 1lb/nr) would require approximately 1502 kg (3300 1b)
of reserve fuel to continue the planned flight. It appears that neither
failure mechanism would jeopardize the aircraft safety.

A similar conciusion is made for candidate D. Vent rates are lower
than for B (even assuming the open cell fcam is permeated by GH; through
the metal vacuum jacket provided for the microspheres). For the condition of
GH, leakage into the microspheres, the consequences of a double fzilure with
subsequent air leakage into the open cell foam was not considered because of
the GN7 purge system. The air leakage condition was based upon the assumption
that the 5-mil stainless steel vacuum jacket has a small leak. The data
shown in this case are based upon a small localized leak which was felt to be
representative of that which might occur in a welded jacket seam during
prolonged service. For these purposes the leakage rate was postulated to be
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Figure 112. - Candidate C circumferential temperature distributions
for liquid fraction = 0.90.

256



VAPOR
BARRIER

=i

-- - ' crosep ceLL
, x=2/3t

CLOSED CELL,
A=1/3¢

TANK

WALL

500

3s0

T T N I T
. ——r— I—.?If«lll - S - —_ »
2.. “ . - - — nnm.l

Iml|].vll !~1 mc ”
. w _ DR I T PRRNEY SN R A R P (T S i PN P, .w.(. - ‘w ——
: cfr e e - :
....... |- ', e .
i N I |
L [ SR O OO U AN N IR AR IO co oo g
- e R | - - —]
,,,,,,, .. m . sﬁ . A - :.L.\:;'..\.. o ﬁ\:\ . .
ﬂ’ ..... dooe ! . W . - A
..... “ Y’ \x\ . \\. .
................ o i \ . I [T . et .KM. o
_. oot A 7 , . : ) :
. s K2R . - A R
A0 I VL / N m Pl
: | | . : ; W
2 g 8 -

250
200

280

260+

240 -

200

180

160

=~ 120}~

100~
80
60
40

20+
0

x 140}~

o "dW3

1.0

0.8

0.6

0.4

0.2

£ic

Figure 112. - Continued.

257

AP SR



- e~

TEMP., O

258

280

240

200~

180

160

140

120

100~

°g

450

SO T T T T T T ]
"""" T ;
; ; : § i § i

=

350

250

200

150

100

50

VAPOR
BARRIER

1
)

i

o
CLOSED CELL,
1x=2/3¢

|
i
!

i
!
1
|
|
i

i

P

I x=

CLOSED CELL,
if;:

i TANK

WALL

il

Figure 112.

- Concluded.

1

-0



TEMP., ®K

260 -

180 |-

160

140 —

120

100 —

Figure

500

450

400

350

150

100

Q

- T ; i
L .. PR RPN S SRR PN SRS PO .l. .j:. ----- PR S
i i
| - {

* n/=0.90

~i n/=0.50

|

4 : ' . ro
VACUUM JACKET J

i
¢
.
¢
i

o Eachaaa

nz=.90

: : : ; Pl e em0a5 |1
o AT ' i i i
Lol \r =090 | W-ns=080\ EI
i 5 : e : j i :
3 i | : ; i\ : !
SO SO S : ' . |
i 1 ; i ; i i H
— | . ; ’ .. .. :. ......... ’ R B .?I

0.4

z7ic

0.6

113. - Candidate D, circumferential temperature distributions for
tank wall and vacuum jacket.

259



TABLE 42. -~ MaXIMUM COMPUTED CIRCUMFERENTIAL TEMPERATURE GRADIENTS IN TANK
WALL AND INSULATION SYSTEM FOR NORMAL OPERATING CONDITITNE
Maximum Gradient at Location °K/m(°F/in.)
Candidate Liquid Tank Insulation Exterior
No. Fraction Wall Mid cthickness) Vapor Barrier
0.90 157 (7.2) 37 (1.7) 4 (0.2)
A 0.50 339 (15.5) 74 (3.4) 20 (0.9)
0.15 L84 (21.2) 112 (3.1) 33 (1.5)
0.90 68 (3.1) 39 (1.8) 33 (1.5)
B 0.5V 7% (3.4) 44 (2.0) 35 (1.9)
0.15 116 (5.3) 63 (2.9) 46 (2.1)
0.90 125 (5.7) 31 (1.4) 7 (0.3)
c 0.50 282 (12.9) 55 (2.5) 22 1.2
0.15 381 (17.4) 90 (4.1) 33 (1.5
0.90 98 (4.5 17 (0.8)® 4 (0.2)
Lo 0.50 232 (10.6) 22 .o®@ & (0.2)
- i 0.15 313 (14.3) 28 (1.3 | « .2
(a) Microspheres are a packed bed type of insulation and do not transmit
tensile loads,

equivalent to that from a 0.32 em (1/8-inch) diameter orifice.

Even assuming the entire microsphere volume is filled with air, the wall heat
input due to cryopumping is negligible compared to that through the insulation

at the higher pressure.

With the
vacuum pumps operating the insulation annulus pressure can be maintained at
1 Torr under these coaditions (compared to the design pressure of 0.1 Torr).

A second consideration for the vacuum system of candidate D is ro assume
a catastrophic failure of the vacuum enclosure, such as might be experi-
The flow of

enced by penetration of the aircraft wall by a foreign object.

air into the vacuum space might not be limited by the jacket, and condensation
of air products would occur at a high rate.
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The rate of condensation and solidification is a complex function of heat
2nd mass transport within the porous insulation and its accurate representation
is beyond the scope of this program. The microsphere insulation gas flow
conductance for ¥, at atmospheric pressure and 293°K is 5 x 104 (gm, sec cm?)
(cm/Torr) so the insulation limits the lateral mass transfer from the opening
in the jacket. Also, the void volume for microspheres is on the order of 35
percent so the thermal conductivity of the liquid or solidified laver would
be reduced ov.r that of nitrogen in either phase.

During use the jacket is under a mechanical zompressive load of approxi-
mately 3.5 kPa (0.5 psi) resulting from the compression of the open cell foam
by the aircrafc exterior skin. This load will keep the microspheres in a
densely packed coniiguration, and they will not flow out of an opening in the
jacket other than in the irmediate area of puncture. Another cons.deration
is that condensed and solidified air may plug the area adjacent to the opening
and further restrict rlow of air into the microsphere annulus so it could not
cryopump a significant distance from the opening. Because of the very small
pores intercomnecting each interparticle void, liquid air will be constrained
froz flowing freely throughout the annulus. With increasing time increments
the liquid air «ill solidify.

Secause of the uncertainties associated with the above assumptions and the
complexity of a rigorous analysis, an upper limit for LH; boiloff was calcu-
lated for a worst-case condition resulting from a catastropaic failure. This
assumes that air flow Is not restricted by the insulation and that air can
flow freelv to the entire tank surface. It is emphasized that this worst case
condition is not coasidereé realistic in that it is highly improbable that air
could penetrate to all areas around the zank.

The void volume of the insulation space (solid fraction of microspheres
is 0.65) is 2.36 a3 (83.3 fr3). Assuming a solid nitrogen density of 962 ke /3
(60 1b/£c3), 2270 kg (5000 1b) of solid air could form in this annular volume.
A wall heat rate during condensation was assumed to be 3150 W/mZ (1000 Bru/nr
ft2) which results in a time of i2 minutes to €ill the volume, Including the
heat of fusion this corresponds to a mean heat rate, 3546 W/m? (1125 Btu/hr
ftz}. After 12 minutes, in this worst case situation, the microsphere space
is filled and further condemsation would occur in the outer covering of opcn-
cell foam. Eewever, the thermal resistance of the solid nitrogen laver will
limit tank wall heat rate. For a jacket temperature corresponding to the
freezing moint of nitrogen and a solid nitrogen thermal conductivity of
0.29 W/m OK (0,17 Btu/hr ft OF) the tank wall heat flux is reduced to 353 W/m2
(112 Btu/hr ft-).

The conductivity of the solid layer would actually be less than the above
value due to the inclusion of the microspheres (evacuated inner volume) in the
laver, but as this value is not known, the higher figure was used for the
worst-case estimate.

For a full fuel tank, the boiloff during the initial l12-minute period
would be 1145 kg (2525 1b). After this period the boiloff rate would be
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558 kg/hr (1230 1b/hr). This maximum fuel loss rate would probably require the
addition of an emergency vent.

A major tip or puncture in the vacuum jacket of candidate D is thus
seen to represent no critical safety hazard to the aireraft. It will, of
course, be cause for the pilot to seek an emergency landing, exactly as he
wotld in the event of a similar puncture of the fuselage of a conventionally
fueled aircrafrt.

A critical sequence in the situation postulated will occur after the
aireraft nas landed, when the tank is being emptied for repair. As rhe LHj is
removed from the tank, the solid air wi.l warm, liquefy, and then boil. Unless
special procedures are followed, the cryopumped air can expand so rapidly
large areas of =he vacuum jacket may be blown off. Proper handling can obviace
this situation.

7.1.6.3 Direct operating cost: On the basis of the required tank volumes
derived from the thermal analysis procedures for each insulation type and
thickness, estimates of weights of all components were made ro determine dry
weight of the fuel containment svstem. The following components were included
in the dry weight statements for each system:

e Tank shell, integral or nonintegral design

o Tank supports and internal baffle

e Insulation material

® Vapor barriers, where applicable

e Purge barrier, where applicable

e Vacuum jacket, where applicable

4y
®

Fuseslage structure, nonintegral tank

e TFairing, integral tank

e Vacuum pumps and controls, where applicable

e Purge gas storage and controls, where anolicable

This total dry weight combined with design mission fuel weight, weight of

fuel evaporated in flight, weight of fuel vented on the ground, and the fuse-
lage length associated with the tank volume were then input into the DOC
equation. This was repeated for each insulation thickness, and the values of
DOC were plotted againgt the insulation thickness to graphically determine

the thickness associated with the minimum in DOC for a particular system.

The form of the DOC eqation which was used in analysis of the fuel containment
system is shown in 3.4,
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For each DOC calculation in this analvsis of the four preferred candidates,
the dry Iuel containment system weight and fuel loss weights were computed on
the basis of the aft tank only, and the results were then rultiplied by a
factor of 2 to provide a reasonable approximation of rotal aircraft system
weights for application to the DOC equation.

Using the data from Table 41 for system sizing, DOC was calculated as a
function of total FCS thickness (t). 3y plotting TOC versus t, a minimum
value of DOC was obtained with a corresponding FCS thickness for candidates A,
C, and D; Figure 114. These selected thicknesses were, respectively, 20.32 em
(8.00 in.), 9.1% em (3.60 in.), and 6.12 cm (2.41 in.). Since candidate R has
a fixed geomerry, it therefore has a singular value of DOC for the selected
vacuum pressure of 107 Torr.

The characteristics of each of the four candidate insulation systems,
using the thicknesses of A, C, and D so chosen, were individually entered
into the ASSET computer program tor aircraft optimization, along with repre-
sentation of the preferrec tank structural concepts, the LH>-fueled engine,
and the other comronents of the LH, fuel system previously described. The
results of this investigaticn, which provided the basis for selecting a final
insulation svstem concept, are presented in 7.3.

7.2 Tank Structure

An investigation to determine a preferred concept for the fuel rank
structural design proceeded in parallel with that of the insulation study.
This section presents results of that structural investigarion. Design
criteria and loads are established, structural concepts for both inregral and
nonintegral type tanks are described, and the results of the analyses are
presented. In addition, the results of paramectric studies are reported which
determined (1) a preferred shape for the fuel tank dome ends, (2) the effect
on economics of specifying a reduced design life for the crank structure, (3)
the effect of designing for different pressure levels, and (4) the viability
of using a pressure-stabilized structure. An analysis of tank suspension
methods for both the integral and the nonintegral tanks was parformed.

7.2.1 Structural design criteria ard loads. — The structural design criteria
and loads defined in this section were developed to provide (1) the basis for
the evaluation of the candidate tank configurations and {(2) a level of struc-
tural safety equivalent to current transports for assessing structural mass
trends resulting from application of these criteria.

In general, the criteria are based on the structural requirements of
the Federal Aviation Agency, FAR 25 with specific criteria being the same as
that used for the L-1011 aireraft. This section presents che following
criteria: basic airplane performance data (airplane mass, design speeds,
maneuver envelope, etc.), design pressure, emergency landing, thermal stress,
combined loads, fatigue and fail-safe. In addition, the design loads are
presented for four flight conditions. :
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7.2.1.1 Airplane weight 2nd inertia data: The loads are based on the design
weights shown in Table 44 which were taken from Referance 1 for use as prelimi-
nary values. The inertia distribution data has been estimated based on these
weights and the basic geometry and layout of the configuration. Forward c.g.
limic was assumed to be 20 percemnt MAC. Srtructural reserve fuel is 7 percent
of total fuel, the same criterion as used on the L-1011.

7.2.1.2 Design speeds: The design speed-altitude variation is presented in
Figure 115. It is the same as the L-1011 airplane. This figure shows the
variation of cruise speed, dive speed and maneuver speed with altirtude.

Design cruising speed, V., is the maximum speed at which encounter of
high-intensity nonstorm turbulence (Uy, = 15.2 m/s (50 £ps)) must be considered.

Design dive speed, Vp, is established so that the probability of
inadvertently exceeding dive speed is extremely remote even while operating
at maximum operating speed.

Design maneuvering speed, V,, is determined from the aircraft stall
characteristies. It is very near to the minimum speed at which the design
limic load factor can be attained.

7.2.1.3 Maneuver envelope: The maneuver envelope is a function of weight
and altitude. At low speed, the attainable load factor is limited by weight
and maximum lift. At speeds above Vy» the allowable maneuver load factor is
defined by FAR Part 25.

The envelope shown in Figure 116 corresponds to the altitude at which the
constant M. line intersects the comstant V. line (M_ = 0.9, V. = 375 KCAS).
Other points of interest are defined by the intarsection of the constant }
line and the constant Vp iine (Mp = 0.95, Vp = 224 m/s (435 KCAS), h = 6645 m
(21 800 ft)), the point where V. is a wmaximm (V. = 193 m/s (375 KCAS) = 189
m/s (368 KEAS), h = 2048 (10 000 £t)) and sea level where Vp is a maximem
(Vp = 223 m/s (435 KCA3) = 224 m/s (435 KEAS)).

7.2.1.4 Design loads: Five flight conditions were investigated for static
strength of the fuselage aftbody:

(1) A PLA (positive low angle of attack) condition at 6645 m
(21 800 ft) of 2.5 g's and a download on the horizontal tail
of 45 359 kg (100 000 1b) (Figure 117).

(2) An abrupt pitching maneuver at sca level of 1.0 g with a download
on the horizontal tail of 58 967 kg {130 000 1b), included on
Figure 117,

(3) A vertical gust condition at 3048 m (10 000 ft) was found to be
not critical
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TABLE 44. — INITIAL VALUES, DESIGN WEIGHT SUMMARY

Weight
Condition kg 1lbm.

Maximum Take off Gross Weight 181 000 400 000
Landing Gross Weight 172 000 380 009
Operating Weight Empty 108 000 238 000
Structural Reserve Fuel 2 200 5 000
Maximum Weight with Structural 168 000 370 000
Reserve Fuel

Minimum Flying Weight 110 000 243 000

DESIGN SPEEDS VS ALTITUDE

50
14 1
E1z » 20 \Eiis;::
8 M = 0.90 \ |_Mp, = 055
o
S 10} \<\
= 30
< =
w 8F o ‘\\ﬂ
o =]
> | 2
2 o = )
[+ 20 =
& Va3t W= 181440 kg
£ {400 000 b}
ab Ve=193mfs —
10 {375 KCAS) / oz
1
2 Vp=22am/s -f
(435 KCAS)
L 1] ._1f 1
(i 200 240 280 320 360 400 440
Vo /2 knoTs
L L 1 | H i 1 J
100 120 140 160 180 200 220 240
Vg 2 _ EQUIVALENT AIRSPEED, mfs
Figure 115. — Design speeds vs altitude.
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Figure 116 - Maneuver envelope - 181 437 kg (400 000 1b)
gross welght, 7925 m (26 000 ft) altitude.
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Figure 117 - LR, subsonic transport fuselage aftbody limit loads,
PLA and abrupt pitching maneuver conditions.
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(4) A negative maneuver condition of -1.0 g with an upload on the
horizontal tail of 7257 kg (16 000 1b) (Figure 118).

In addition to the above limit load conditions, a cruise conditiorn was inves-
tigated in support of a fatigue evaluarion. The condition selected was 1.0 g
at start of cruise with a down load on the horizonmtal tail of 22 680 kg

(50 00Q 1b) (Figure 119).

7.2.1.5 Tank design pressures: LH, tanks for the baseline aircrafr were
designed to operate at a nominal pressure of 14.5 kPa (21 psia). Facrors
required for cabin pressure (FAR 25) are assumed applicable to the LHp tank
design and the maximum cruise altitude 1s assumed to be 11 600 m (38 000 ftr).

p = 14.5 kPa (21.0 psia)
The differential pressure (Ap) acting om the LHZ tapks is
AP = P - Pat

pat = atmospheric pressure

The differential pressure was multiplied by a facter of 1.1 to account
for relief valve tolerarce and inertia effects, to provide an operating
pressure.

pop = 1.1Ap

e Differential Pressure for Combination with Limit Loads -~ A limit
pressure, equivalent to the operating pressure, is combined with
the limit loads due tc maneuver or gusts.

plimit - pop

e Differential Pressure for Combination with Ultimate Loads — An
ultimate pressure that corresponds to the operating pressure
multiplied by 1.50, was defined for ccmbining with the ultimate
loads due to maneuver or gusts.

P = 1.50 x P,

ult P
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e Ground Test Differential Pressure - A proof pressure corresponding
to the operating pressure wmultiplied by 1.33, was specified. No
detrimental deformation shall result from this condition.

P 1.33 x Pop

proof

A burst pressure equivalent to the operating pressure multiplied by 2, was
defined. Catastrophic failure of the tank shall not occur.

Phurst 2.00 x pop

7.2.1.6 Emergency landing condition: The following ultimate inertia load
factors (FAR 25.561) were applied to the tank suspension system and fuel
within the tank.

upward: n = 2.0
forwvard: n = 9.0
sideward: n = 1.5
downward: n = 4.5

Fach load factor was applied on ar arbitrary independent condition.

7.2.1.7 Thermal stress criteria: Thermal stresses reflecting the maximum
individual or combination of through-~the-wall, circumfereatial, and longi-
tudinal temperature gradients were investigated. For the critical flight
sondition(s), the external loads were combined with the appropriate tempera-
ture gradients associated with the insulation system, tank suspension method,
and tank ullage condition.

e Limicr Thermal Stresses/Strains ~ For limit design purposes, thermal
stresses were calculated for the design flight condition that are
compatible with the limic-load design condition. No additionmal factor
of safety was applied to the thermal stresses/strains.

e Ultimate Thermal Stresses/Strains - The stress-sirain relationship may
not be linear when ultimate design strees levels are being comsidered.
In these cases the thermal straiz was held invariant and the stress
(E x ¢ ) was combined witk cthe load stress which is thickness dependent.
Where thz thermz2l strain was of the same sign as the load stress a
factor ol safety of 1.25 was applied to the thermal strain. A factor
of 1.00 was applied when they wére subtracrive.
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7.2.1.8 Combined Loads Criteria: Flight loads, tank pressure and thermal
stresses were combined as specified.

The factor of safety, as defined for the loads, pressures, and thermal
strains in the foregoing section, was used to combine the loads and form
the final stress resultants.

For compression design, the tensile force produced by the internal
pressure was ignorcd and only the shear and/or compressive forces produced
by the external loads were considered with the temperature induced
strains/stresses.

For tension design, the sum of the membrane forces produced by the inter-
nal pressure and external loads was considered with the appropriate thermal
strain/stresses.

The flight and ground conditions considered are specified in Table 45
with the design levels (factors of safety) of the load and thermil emvironment
defined.

7-2.1.9 Fatigue design criteria: Fatigue des’gn requirements can be met by
limiting the permissible design temsion stress levels for static ultimate
design and normal operating conditioms.

An average flight time of approximately 5 hours per flight was used for
the LHy~fueled transport. For 2219-T851 Alumimm Alloy at -253°C (-423°F),
Figure 120 presents the relationship between fuel tank circumferential design
stress and fatigue qualicy for 50 000 hours of service with the average flight
time, one internal pressure cycle per flight, and a life reduction factor of
four. The upper curve reflects the ultimate decign stress levels applicable
to fuel tank substructure other than skin, such as frames, which are uniaxially
loaded by pressure and thermal loads. The ultimste design stress levels to be
applied to fuel tank skin hoop tension are represented by the second curve
on this figure. These values are reduced, to approximately 71.5 percent of
the substructure design allowable, because the skin is subjected to biaxial
stresses from internal pressure, extermal loads, and thermal loads. The
allowable gross arca :cension stress for the operating condition for 2219
aluminum is presented as the lower curve of Figure 120. For other materials,
the tension allowables in other than fuel tank regions are related to prior
experience and successful service experience with similar types of aircrafe,
such as the L-10ll commercial tramsport.

The fatigue life for the materials selected for the integral and non-
integral taok designs are achieved by limiting the ultimate design stress
values. Table 46 contains the allowzble gross area temsion stresses for
2024 and 2219 aluminum alloys with a fatigue quality index (Kt) of 5.0.
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TABLF 45. - COMR:IZFD LOADS AND THERMAL CRITERIA
External Internal Thermal
Condition Loads Pressure Stress/Strain
Operating Limit Limit Limit
(Cruise Cond.)
Limit Design Limit Limit Limit
Ultimate Design Ultimate Ultimate Ultimate
Fail-Safe Design Limit Limit Limit
Emergency Landing Ultimate Ultimate Ultimate
Proof Test - Proof -
Burst - Burst -
700 100 T T T
2219 - T8S1 ALUMINUM ALLOY
DESIGN TENSION STRESS EQUALS
600 MAXIMUM S-N STRESS AT
R = 0.43ANDN = 10000X4
80 N = 40000 CYCLES |
TEMP —252°C (—423°F)
s 500 [~
= AN |
(723
W 400 - TANK
£ = N T~ SUBSTRUCTURE
(7. ] =4
Z SKIN b\ ULTIMATE
& 30l a0 N~ N - . DESIGN
N T
200 - '
OPERATING [ —
20 DESIGN
ST
100 - RESS
o- ]
(1] 1 2 3 4 5 6 7
FATIGUE QUALITY INDEX, l(t
Figure 120. - Variation in circumferential desigr stress with fatigue
quality for 10 000 flights including a 1life reducticn
factor of four on pumber of flights.
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TABLE 46. — FUSELAGE ALLOWABLE GROSS AREA TENSION STRESSES FOR
ULTIMATE DESIGN AND OPERATING CONDITIONS

Noninregral Integral
Shell Tank ) oth (1)
2219 Alum 2219 Alum
2024 Alum -253°C -253°c
(RT) (—423°F) (-423°r)
Components kPa (psi) kPa (psi) kPa (psi)
Ultimate Design Condition
e General Structure 510 264 (45 000) NA NA

e Concentrated Loads [241 31€ (35 000)|234 422 (34 000) (234 422 (34 000)
and Biaxial Stress
Areas

Operating CondZtion

e Skin Hoop Tension NA 172 369 (25 00C) 172 369 (25 000)
at Operating Pres-
sure, Extermal Loads
and Thermal Stress

Notes:

1. Design allowables based on a fatigue quality index of 5.0,
50 000 hr of service life and a life reduction factor of 4.

For the nonintegral tank design, 2024 zluminum alloy was used for the
fuselage bending materisl. The ultimate gross area tension stress for sya-
metrical flight and ground conditions was limited to 310 264 kPa (45 000 psi).
In addition, the basic design allowzble stress was further reduced to 241 316
kPa (35 000 psi) in local areas subjected to biaxial loading, regions adjacent
t> highly concentrated loads, blind areas and single load Paths in primary
structure. For the 2219 aluminum alloy which is used for the fuel tank design
in both the integral and nonintegral designs, the allowable stress in areas

subjected to concentrated loads and biaxisl stresses was limited to 234 422
kPa (34 000 psi).

Table 46 presents the design allowables for the specilal fatigue consi-
derations required for the operating design condition for pressurized fuel
tank structure. For both integral and nonintegral tank designs, the allowable
gross-area tension stress of 172 369 kPa (25 000 psi) (R, = 5) for fuel tank
skin circumferential stresses is related to fuel temperature, oumber of land-
ings, and related values of life reduction and stress concentration factors.
The allowable stress for fuel tank substructure, such as frames, would be
higher than that required for fuel tank skims because the loading on the sub~
structure is primarily uniaxial.
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7.2.1.10 Fail-safe (damage tolerance) design criteria: The objective of the
fail-safe (damage tolerance) design criterion is to ensure that flight safety
is maintained in the event of structural damage of reasonable magnitude. Such
damage may arise from fatigue as well as accidental impact or other sources.

To meet the objective, a fracture control plan consisting of the following
aspects wes implemented.

Minimum requirements cn material fracture properties shall be established
for material selection. The required properties shall include fracture
toughness, fatigue crack growth, and threshold for stress corrosion cracking.

Materials ia as received condition as well as after undergoing major fabrica-
tion processes such as cold work, welding, and heat treatment shkzll be tested.

Based on production inspection capabilities, the maximum size flaw that
is likely to be miss2d shall not grow to critical pruportions during the life
of the structure; i.e., 10 000 flights or 50 000 hours. The inspection

requirement shall be met by using a combination of quaiity control and NDI
requirements.

The operating stress levels and material selection shall be chosen to
ensure that under normal service conditions undetected flaws will remain

as subcritical through-the-thickness cracks for a sufficiently long period.
Thus, the detection of such flaws by leakage can be ensured.

For the above criteria, the critical damage size it that which can sus-

tain the operaring pressure iu combination with the limit loads due to
maneuvers Or gusts.

For fail-safe, the tank structure must be capable of supporting the
operatirg pressure loads and appropriate fail-safe loads for accldental
damages equivalent to a 30.5 cm (12.0 in.) through-the-thickness crack
anywhere in the structure, including members attached to the structure across
the damaged section. The fail-safe loads shall be equal to the maneuver and

gust loads that can reasonably be expected during completion of the flight
in which the damage occurred.

Fail-safe for the remainder of the structure shall be designed to meet
the fatigue and damage tolerance requirements of FAR 25.571.

Besides the customary quality control and NDI procedures which applied
to the material received and during fabrication process, a leak test shall be
conducted concurrently with the ground proof test discussed previously.

7.2.2 Structural design concepts and materials. - Two basic types of tamk
designs were considered for this study:

» Integral, where the tank serves both as the container of the fuel
and also supports the body loads
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e Nonintegral, im which the tank is simply a fuel container and does
not participate in the support of the body loads which are carried
by a separate shell structure.

Promising structural design concepts were evaluated for each of the above basic
types of LHZ tank designs and are shown in Table 47.

For the Integral tank design, three wall concepts were considered with
all designs being restricted to one-piece configurations to minimize potentiai
sources or leaks. These concepts were the blade-stiffened, zee-stiffemed and
tee-stiffened designs. Ian addition, an unstiffened wall design was iacluded
in the candidate concepts for the tank desiga.

The wall concepts considered for the nonintegral tank design were the”
conventional corstruction zee~ and hat-stiffened concepts for the fuselage
shell and the same one-piece wall designs as described for the integral tank
used for the tramk design.

For the fuselage shell structure of the monintegral tanks, the conventional
2024 and 7075 aluminum alloys currently being employed on wide~bodied trans-
port were used for the baseline material; whereas, the aluminum alloy 2219 was
selected for the tank material for both basic types of tanks.

The 2219 aluminum alloy was selected because of its ductility at eryogenic
temperatures, as well as its weldability, formability, stress corrosion
resistance, and its high fracture toughness and resistance to flaw growth,
References 27 and 28.

Table 48 presents a compilation of materials data applicable to the design
of LH2 fuel containment tankage and fuselage shell structure.

TABLE 47. - STRUCTURAL DESIGN CONCEPTS

<
}
Tank Dasign
Structural
Component Nonintegral Integral
Fuselage ,Sqf Zee-stiffened Not applicable
<5 Hat-stiffened

Tank ~<v Blade-stiffened

'SYY Zee-stiffened pOne—Plece

Configurations
—1Sf' Tee-stiffened
— Unstiffencd
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For fuselage shell structure, independent of the fuel containment
system, data for the 2024 and 7075 materials indicate that such materials
can remain in contention for independent fuselage shell structure of the
Lﬂz transport.

Comparison of data for 2219, 21-6-9 (Nitromic 40) and 321 materials for
the tank structure show the strength/density advantage for the 2219 material
in fuel containment applications. -

7.2.3 Concept screening. - The design of an economically viable LHp-fueled
ajrcraft requires the lowest attainable structural mass-fraction commensurate
with the assumed technology period. To achieve tnis goal-promising struc-
tural design concepts were evaluated for each basic tank configuration (i.e.,
integral and nonintegral) using a representative load/temperature environment
and the design criteria specified in 7.2.1. The candidate structural design
concepts are described in 7.2.2.

7.2.3.1 Evaluation procedure: To provide a rational basis for evaluating
the candidate tank wall concepts for the integral znd nonintegral tanks, a
structural investigation was conducted which proceeded in parailel with that
of the insulation system described ir. 7.1. The structural evaluation con-
sisted of the following steps:

1. Baseline tank configurations were established for the integral
and nonintegral tank designs. Structural configurations and a
typical insulation system were postulated for a constant volume
tank tc define the basic tank dimensioms.

2. A BOSOR4 finite difference structural model vas established for
the integral and nonintegral tanks using the basic dimensions
aefined for the above baseline tanks. A representative wall con-
cept was selected for each tank from the candidate concepts which
provided the property data ior the models.

3. Using the external loads, static solutions were obtajined using the
BOSOR4 structural models. Displacements, inplane stress resultants,
and bending moment resultants were defined for each tank design.

4. Point design regions were selected and typical structural components
for each tank design were defined for conducting the detail analysis.

The results of the BOSOR4 static solutions were used to define the
load/temperature eavironment.
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S. Detailed structural analyses were conductec on each candidate tank
wall cencept using the intermal load/temperature environment coOor—
responding to the basic tank design being investigated. These
enviromments, in conjunction with computerized stress analysis
programs, were used to define the minimum-weight proportions and
corresponding weight of the candidate concepts. Included im this
study were basic strength, stability, and fatigue and fail-safe
analyses.

6. The total tank weight for each candidate concept was extrapolated
from the results of the point design analvsis. These results were
then used to select the most promising tank wall concept for the
integral and nonintegral tank designs.

7.2.3.2 Analytical methods: Established methods were employed to analytically
evaluate the candidate tank concepts during the concept screening analysis;
they werz of two general types: (1) computerized shell programs to define the
internal loads and conduct the general stability analysis, and (2) stress
analysis programs and methods for sizing the major strucrural components. A
description of these programs and analytical methods 1is presented in the
following text.

7.2.3.2.1 Shell analysis: The computerized shell analysis program, BOSOR4
(Reference 29), was used tc define the internal loads and conduct the
stability analyses. This program uses a finite-difference solution method
based on an energy formulation and can perform stress, stability, and
vibration analyses of segmented, ring-stiffened shells. The BOSOR4 program
1s limited to shells of revolutiom.

7.2.3.2.2 Structural amalysis: The basic strength and stability analyses of
the candidate tank wall concepts were conducted using existing structural
analysis computer programs. In addition to these programs, established
methods were used to analyze the damage tolerance aspects of the wall con-
cepts, as well as the basic stremgth of the other major structural components.

For the tank wall concepts a computer program which links general purpose
random search algorithms with available stress analysis programs was used to
define the minimum weight panel proportions. These stress analysis programs
are similar to those reported in Section 12 of Reference 31. Included in these
programs is a strength evaluation of the complex stress state, i.e., inplane
and pormal stress resultants. The search algorithm, entitled MONTE CARLO I,
employed in these programs contains a sequence of two previously reported and
well known approaches: Random Selection and Random Rays, Reference 32.
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The sizing of the frames for this study were based on the theory derived
by Shanley in Reference 33, which is premised on providing suffizient frame
stiffness to preclude a general instability failure of the shell in bending.
Shanley's expression for the required frame stiffness is:

(EI) = CfMDZIL

This expression relates the frame stiffness (EI) to the applied bending
moment (M), the shell diameter (D), and frame spacing (L).

7.2.3.2.3 Fatigue analysis: A detailed descriptioa of the fatigue criteria
is presented in 7.2.1.9. The intent of this section is to describe the
application of this criteria to the structural components.

The fatigue design requirements are met by restricting the permissible
design temnsion stress levels used for design. Design allowables for both the
operational and ultimate design conditions were established and are shown
in Figure 120.

For the operating condition, the limit loads for the cruise condition
were used and the fuel tank skin circumferential stress was restricred to
a stress level of 172 369 kPa (25 000 psi), kt = 5,

The design allowables for the skin and substructure of the tank for the
ultimate design conditions are also shown on Pigure 120. The application is
similar to that of the operaring conditions, with the exception that the

applied loads reflect the maximum ultimate design loads from any of the flighe
conditions.

7.2.3.2.4 Fail-safe analysis: The cbjective of the fail-safe analysis was to
ensure that the structure in the presence of an zssumed damage conditior was
capable of supporting the design load of 100-percent limit load. Both circum-
ferential and longitudinal skin crack damapes were assumed as specified in the
design criteria, 7.2.1.10.

In general, for all wall concepts which have separately attached stiff-
eners (spot welded or mechanically fastened), the stiffener reinforces the
skin and provides crack-arresting capability; conversely, for one-piece skin/
stiffener designs, no reinforcement capability 1s provided by the stiffener.
In the latter case, the fail-safe criteria Is met by lowering the axial
stress level (i.e., increasing the cross-sectional area) and/or by providing
external straps.
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The analysis methods tsed for conducting the fail-safe analysis are
presented in Reference 34. Figures 121 and 122 outline the general equations
used in determining the residual strength of the damaged structure for the
circumferential and longitudinal crack conditioms, respectively.

7.2.3.3 Baseline tank configurations: Baseline integral and nonintegral

tank configurations were defined for use in the analysis and evaluation of the
candidate structural concepts in the concept screening analysis. The size

and geometry of these nominal tanks were established based on the following:

e The tank 1s of cornical configuration with ellipsoidal closures having
an aspect ratio (a/b) = 1.30

® The tanks 2re covered with an insulatioa having a thickness of
15.24 eam (6.00 in.)

® The tanks are sized by using an overall effective fuel density of
63.72 kg/m3 (3.978 1b/ft3).

For the baseline aircrafe,

Wg = 177 690 kg (391 740 1lbm.)

Usable fuel per tank = 27 933 ;61 630) . 13 978 kg ( 30 815 1b)

Tank volume (in as-built, _ 13 978 (30 815) _ 3
warm condition) ’ 63.72 (3.978) = 219.3 m° (7 746 ft3)

As mentioned earlier, the basic analysis of both structure and insula-
tion systems was performed using the aft tank of the aircraft as a model.
The geomerry of the aft tank and its relation to the aircraft was presented
previously in Figure 87. Table 49 shows the assumed structural concepts
and the major dimensions of the baseline integral and nonintegral aft tanks.

7.2.3.4 Structural models: BOSOR4 math models were constructed for each
basic tank design (integral and noniategral) to define the intermal loads
for the concept screening analysis. The tank dimensions used for the models
reflected the size and geometry of the nominal baseline tank configuratioms.
Representative wall concepts were selected from the list of candidate

structural concepts and their corresponding stiffnesses were used as input
to the structural models.
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TABLE 49. - CONCEPTS AND DIMENSIONS OF BASELINE INTEGRAL AND
NONINTEGRAL TANKS

OUTER FUSELAGE CONTOUR

030 cm (0.12in.)

|

284

: 15.2qn:16710ﬂ 12.?0"\
{6in} (632in.} (5in.)
_L L 284 cm
e 1 ’ 112in)
/ 1 15.?:111
TANK o_r,lcm (6 in.)
STRUCTURE (02in.)
05em
-—{02in.)
Integral Nonintegral
Vol - m3(ft3) 21 913 (7746) 219.3 (7746)
Dz— m(ft) 4,216 (13.833) 4,216 (13.833)
D, - m(ft) 6.32 (20.75) 6.44 (21.12)
dz- m(ft) 3.90 (12.78) 3.65 (11.967)
d, - m(ft) 6.00 (19.697) 5.87 (19.254)
£ - m(fe) 8.39 (27.52) 9.32 (30.59)
h'.!._ m{ft) 2.31 (7.58) 2.26 (7.41)
hz- m(ft) 1.50 (4.92) 1.4 (4.61)
L - m(ft) 12.20 (40.02) 12.99 (42.61)
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7.2.3.4.1 Nonintegral tank model: The representative structural/material
arrangement selected as a baseline for this design consisted of a zee-
stiffened panel ccncept for the shell (the fuselage structure surrounding

and supporting the tank) with sheet metal frames at approximately 50.8 cm
(20-in.) spacing. The materials for the shell structure are the conventional
2024 and 7075 aluminum alloys. The structural configuration selected for the
LHy tank was the blade-stiffenmed configuratica fabricated from 2219 aiuminum
alloy.

A preliminary sizing of this representative concept was conducted to
define the imp-t properties for tke model. For the ifuselage, the shell wall
and an area of 0.613 cm2 (0.095 in2) per stringer pitch which included an
0.084 em (0.033 in.) thick skin. The internmal frames were of conventionmal
sheet metal constrirction with an area of approximately 4.19 em2 (0.65 in2)
(excluding any effective skin) at approximately 50.8 cm (20 in.) spacing.

The configurations used for modeling the tank reflected the baseline
tank configuration, i.e., ellipsoidal closures and a conical tank. The tank
closures were 2n unstiffened wall design wich a constant thickness of 0.25 cm
(0.10 in.). External rings were provided at the junction of the closures
and the conical section for supporting the tank.

Pertinent dimensions of the baseline fuselage shell and tank are shown
in the structural model represented in Figure 123. The tank was supported
at the equators of the forward and aft tank closures. At the aft support,
the tank and shell had compatible deflection (axial and radiai) amnd rota-
tional degrees of freedom; whereas, only radial deflection was permitted at
the forward support.

The structural computer model is characterized by 150 axial node poiats
in the cank, and 99 in the fuselage shell. Figure 124 shows the structural
model with the components of the applied loads Indicated. These loads
reflect the limic loads components of the PLA symmetrical mansuver condition
at 2.5 g. These components include the tail loads {moment and shear) applied
at aft end of fuselage, the tank internal pressure and inertia loading, and
the tank and fuselage temperatures. The tail loezds applied at the aft fuselage
were adjusted so that the combined effect of these loads and the tank inertia
load would meet the specified shear and moment values at the forward emd of
the tank, FS 2335.

BOSOR4 static solutions were conducted to assess the internal membrane
and bending forces associated with the tank and fuselage structure. Separate
solutions were obtained using each component of the applied loads to assess
the impact of the individual load componeuts as well as providing the basis
for defining other load conditioms.
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Py R

MODEL GROUND
SUPPORT

iTANK

e B B L L

FUSELAGE SHELL

RERR |

/ SUPPORT

° T Y }
586.7 cm . - - . 307.8cm
FWD ¢ (231.0in.) / (1212in.)
180° 5
| 1524 cm 101.6 cm
| {60 in.) (40 in.)
| 2259cm 832.2 em 140.5 cm
(88.92 in.) (367.0 in.) {5532 in.)
FS FS
2335 2700

Figure 123. - Fuselage and tank dimensions used for the nonintegral tanmk

structural model.
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Results of the static solutions include both printout and plots of the
displacements, membrane forces, and bending moments as a function of arc
length. The arc length is measured from the apex of the forward tank cliosure
aft along the tank meridian to the apex of the aft tamk closure, approximately
1625.6 cm (640 in.). Tne pluzs then proceed to the forward erd of the shell
(fixed boundary) aft along the shell meridian.

The three displacement compoments: meridional (U), circumferential (V)
and normal (W) were defined for each load component. Figure 125 displays
a plot of the normal displacement (W) for each of the load components, i.e.,
the temperature, air load, and internal pressure conditions.

The inplane stress and bending moment resultants for each of _he applied
load conditions are shown in Figures 126 through 131. The meridional N1),
hoop (Ny) and inplane shear (Nj;) stress resultants are displayed in
Figures 126, 128 and 130 for the internal pressure, airload and temperature
conditions, respectively. The corresponding merldional (M), hoop (Mp) and
twisting (MT) moments are shown in Figures 127, 129, and 131. All stress
resultants and woments are with reference to the outer skin surface, not
the neutral axis of the shell.

7.2.3.4.2 1Integral tank model: The representztive structural caundidate
selected for the modeling effort on the integral tank design was the zee-
stiffened panel concept with sheet metal frames at approximately 50.8 e
(20 in.) spacing. Tank material was 2219 aluminum alloy. Truss structures
composed of Boron/Epoxy tubular members were provided as interface skirts
between tank and fuselage. Conventional zee-stiffened structure using 2024
aluminum alloy was selected for the short segments of fuselage at both ends
of the model.

The integral rank design represented in the structural model is shown
in Figure 132. The tank was cantilevered from the forward end of the fuselage
segment approximately 152.4 cm (60.0 in.) forward of the interface structure.
The structural model for the integral tank design was characterized by app-oxi-
mately 150 axial node points for the tank and 72 points in the fuselage segment
and interface skirts.

The preliminary sizing of the structural concepts provided the necessary
input data for the model. For the small segments of fuselage at the forward
and aft end of the model, conventional zee-stiffened structure was utilized
with the same material properties as described for the nonintegral tank
cdesign. The input data for the incerface trusses reflected Boron/epoxy .
tubular element having an areas of 14.2 cm? (2.2 in2) and a inertia value of
41.62 cm? (1.0 1n%). The input for the rank structure, which must support both
the flight and internal pressurization loads, reflected the zee-stiffened
design with an area of approximately 1.29 cmi (0.20 1n2) per stringer pitch.
The tank closures were ellipsoidal in configuratinn and of unstiffened wall
design with a constant thickness of 0.25 cm (0.10 in.).
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Figure 133 presents a plot of the structural model with the applied loads
simulating the PLA flighr conditicn shown. Similar to the nonintegral

tank design, static solutions were conducted on the integral tank medeli aund
displacements and stress resultants were obtained.

The normal displacements (W) for each component of the PLA flight condition

are shown in Figure 134. The plets on this figure present the displacements
due to the temperature condition, the airloads, and pressurization conditions,
respectively, starting from the bottom. This figure presents the displace-
ments as a function of arc length measurad along the shell meridian. This
measuremen: initiates at the forward end of the fuselzge shell (fixed bcundary)
and proceeds aft along the meridian to the equator of the forward tank closure.
The arc length is then measured from the apex of the forward tank closure to
the equator, and then proceeds along the tank cylinder to the equator of the
aft tank closure and continues to the apex of the aft closures. The arc length
then proceeds from the forward end of the aft interface skirt through the skirt
and aft fuselage shell. The arc length in Figure 134 is segmented and titled
to indicate the various structural components.

The inplane stress and bending moment resultants for each of the appiied
load compcnents are displayed in Figures 135 through 140. The first two
figures present the stress and bending moment resultants for the internal
pressurjzation condition, and the remaining figures present the resultants
in the same order for the airlcad and temperature conditions, respectively.
All stress resultants and moments sre referenced to the outer skin surface,
not the neutral axis of the shell.

7.2.3.5 Point design environment: The internal load environment imposed on
the aft tankage of the liquid hydrogen-fueled subsonic transport was definmed
at selected locations, hereafter kanown as point design regions, and used as
the basis for the evaluation of the candidate concepts.

The design conditions and their associated flight parameters were
presented in 7.2.1.4. Also included were the resulticg external loads
(vertical shear and bending moment) imposed on the fuselage afterbody by
these flight conditions. The load components for these conditions irclude
the airlocads (tail and iner=ial loads), the intermal pressurization of the
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tank, and the temperature environment. BOSOR4 static solutions were c¢conducted
for each of these load components to define the overall intermal load aiscri-
bution for each basic tank design, i.e., integral and nonintegral. These
results are presented in (7.2.3.4), 3tructural Models. These intercal loads
were then used to define the point design environment for each flight con-
dition. For example, the inplane and bending stress resultants due to the
internal pressure condition from the structural model were multiplied by

~he pressure ratio to form the corresponding stress resultants for each
flight condition.

The tank pressure schedule for each of the design flight conditions is
presented in Table 50. The nomenclature and safety factors used in develop-
ing this schedule are described in 7.2.1.

The point design regions selected for the structural analysis of the
nonintegral and integral tank designs are presented in Figure 141. These
regions, which are shaded on this figure, correspond to the one-quarter and
three-quarter lengths berween the equators of the forward and aft tank
closures.

The load/temperature environments were defined at three circumferential
locations at each of the above design regions. Examples of these results
are presented in Tables 51 through 53. These tables show the inplzae stress
resultants for the PLA, Negative Maneuver and Cruise conditions at the tank
quarter-length point design region.

TABLE 50. - TANK PRESSURE SCHEDULE

Poom. (Paem. | AP | Pop | Prigge | Puie

Alc kPa kPa kPa kPa kPa kPa

Flight Cond. o (fr) |[(psia) | (psi) |(psi) (psi) (psi) (psi)
Positive Low Angle 6706 145 43 102 112 112 168

(22 000) | (21.0) (6.2)1(14.8) | (16.3) | (16.3) |(24.4)

Pitching Maneuver S.L. 145 101 43 48 48 72
(21.0) | (14.7)} (6.3) (6.9 (6.9) |(10.4)

Negative Maneuver 6706 145 43 102 112 112 168
(22 000} | (21.0) {6.2)[(14.8) | (16.3) | (16.3) |(24.4)

Cruise 10 668 145 23 121 134 134 201
(35 000) | (21.0) (3.4)1(17.6) | (19.4) | (19.4) | (29.1)
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TABLE 5i. - POINT DESIGN LOAD ENVIRONMENT, PLA FLIGHT coNpITIon (1){2)

Nonintegral
Tank Design Integral Tark Design
Membrane Forces 3 Membrane Forces 3)
kN/m (1b/in) kN/m (1b/1in)
Circumf.
Structural Location
Component rad (deg) N1 N, le N} Ny Y12
Fuselage 0 (0) 467 (2669) 30 (173) 0 (0
1.57 (s0} 0 (0) 0 (0) 74 (423)
3.16 (1803 68 (-2670)| ~30 -17)| 0 (0
Tank 0 (C) 207 (1184) 446 (2545) 0 (D) 698 (3983) | 415 (2370) [ O (9)
1.57 (90) 230 (1313) | 467 (2667) 6 (33) | 250 (1429) | 416 (2378) | 61 (347)
3.14 (130) 252 (1442) | 488 (2769) 0 (0) |-198 (-1129)| 418 (2386) | O (O)
1. Uleimate loads.
«. Tank quarter-length location frcm the forward head cquator.
3. Meridional (.‘31), hoop (Nz). and shear (le) forces.

TABLE 52. - POINT DESIGN LOAD ENVIRONMENT, NEGATIVE MANEUVER CONDITION (1) (2) -

Nonintegral
Tank Design Integral Tank Design
Membrape Forces £ Membrane Forces 3
kN/m (1b/1in) kN/m (1b/in)
Circumf.
Structural| Lozation
Component | rad (deg) N ) 12 N 2 Y12
Fuselage 0 (0) -94 (~534) -6 -35) | 0 ¢0)
*.57 (90) 0 (0 0 (0) i5 (85)
3.14 (180) 94 (534) 6 (35) 0 (9)
Tank 0 (0) 229 (1307) 446 (2545) ] 0 () 90 (514) | 400 (2285)| O (C)
1.57 (90) 220 (1256) 437 (2497) 2 (13) 244 (1394) | 401 (2287) | 12 (6%)
3.14 (180)| 211 (1204) 429 (2448) 0 Q) 395 (2256) | 401 (2288) 0 (0)
1. Ulrim+te loads. .
2. Tank quarter-lengtk location fron the forward head equator-.
3. Meridional (HZ), hoop (Nz). znd shear (le) forces.
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TABLE 53. - POINT DESISN LOAD ENVIRCNMENT, CRUISE CONDITION(I)( )
I Nonintegral
Tank Design Integral Tank Design
* Membrane Forces (3 Membrane Forces 3
kN/m (1b/in) kN/a (1b/1in)
Circumf.
Structural Location . -
Component | rad (deg) ¥ %2 N2 ! N, Y12
Fusalage 2 (@ 187 {1067) 12 (70) 0 ()
1.57 (90) 0 (0) o (0 30 (169)
3.14 (180 |-187 (-1067) | =12 (-70) 0 (0)
Tank 3 () 277 (1582) 542 (3097} - 471 (2692) | 480 (7740) 0 (D)
1.57 (90) 274 (1563) 551 (3145) 2 (13) 207 (1698) | 480 (2743) | 24 (139)
3.14 (180 283 (1615) 559 (3194) - 113 (643) 481 (2746) 0 (0)
1. Ultimate loads. .
2. Tank quarter-Length location from the forward head equator.
3. Meridional (Nl), hoop (Nz), and shear (le) forces.

7.2.3.6 Point design analysis results: The candidate structural concepts
were subjected to polnt design analvsis to define the most promising struc-
tural concept for each of the basic types of tamks, i.e., integral and uon-
integr2l. Tu.e candidate concepts were presented in 7.2.2, with the analy-
tical methods and point design environments described in 7.2.3.2 and
7.2.3.5, respectively. The structural components included in the poinc
design analysis are represented :n Figure 142. A typical insulation system
is shown for reference purposes only.

7.2.3.6.1 Nonintegral design: The candidate wall concepts identified for
the tznk and fuselage were subjected to point design analyses to define
t'e minimum-weight proportions. For the fuselage, zee-stiffened and hat-
~. '£fened concepts fabricated from conventional zluminum material were jnves-—
. .2ted; whereas, for the tanmk, an unstiffened design (wonocoque shell) was
- _1sidered along with several stiffened designs (blade, zee, and tee), all

< 2d on the use of 2219 aluminum alloy

Two candidate shell configurations for the fuselage were slized for a range
if frame spacings using the previously cGescribed analyticai methods and point
design envircnment.

The resultant panel cross-sectional data for the upper, mid, and lower
fivers at the quarter-length location are shown in Figure 143. As can be
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seen from this figure, the hat-stiffened design has smaller thicknesses than
the zee-stiffened design at all of the circumferential locations investigated.
The equivalent thickness curves for the hat-stiffened concept are relataveiy
iasensitive to frame spacing with approximate values of 3.683 mm (0.145 in.),
2.286 mm (0.090 in.), and 2.667 mm (C.105 in.) indicated for a frame spacing
of 1016 mm (40.0 in.) for the upper, mid and lower fibers, respectively.

The minimum weight designs for the zee-stiffened concept occur at the mini-
mum frame spacings studies and in general are very semsitive to changes in
irame spacing. For comparison purposes, the corresponding thickanesses of the
zee-stiffened design at 1016 mz (40.0 in.) spacing are 4.089 mm (0.161 in.),
2.616 om {0.103 in.), and 3.708 mm (0.146 in.) for the upper, mid and lower
fibers, respectively.

Representative sheet metal frames were sized for application to both fuse-
lage shell concepts. The frame designs were evaluated fo. both strength and
stiffness at the two point design regions on the fuselage.

The frame stiffness requirements wure predicated using the criteria devel-
oped by Shanley in Reference 32, which ensures failure of the sheet~stringer
panel between frames, i.e., preveants gemeral imstability. The frame bending
stiffness (EI), and the corresponding area and equivalent panel thickness for
various frame spacings at the two point design regions are shown in Table 54.
The maximum bending moments and shell diameters are also indicated on this
table.

The basic strength of the frames were assessed using the loads obtained
from the BOSOR4 static analysis. Figure 144 displays the internal hoop forces
acting ic the frame as a function of the circumferential angle. The internal
forces for both the maximum upbending (PLA condition) and downbending (neg-
ative maneuver) conditions are presented. At the fuselage quarter-length
location, a maximum hoop force of +10 676N (+240C 1b) (1limit) is indicated;
whereas, only +7784N (+1750 1b) (limit) is shown at the three-quarter length
locaticn.

Table 55 presents the frame analysis conducted using the internal frame
Joads from the model. The frame hoop forces were adjusted for frame spacings
greater than that used in the model. Representative tension and compression
allcwables and a minimum frame area were defined and are ndéted on the table.

A summary of the area requirements defined by the stiffress and strength
analyses are presented in Table 56. The required design areas, i.e., the
maximum value between stiffness and strength requirements, and their equiv-
alent panel thicknesses are specified.

The combined results of the fuselage shell and frame analysis are pre-
seated in Tables 57 and 58 for the hat- and zee-ctiffened fuselage concepts,
Tespectively. These tables reflect the component and total equivalent thick-
nesses for the shell and frame as a function of frame spacing. The equivalent
unir weights for these designs are alsoc displayed graphically in Figure 145.
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TABLE 56. - SUMMARY OF FUSELAGE FRAME REQUIREMENTS,
NONINTEGRAL DESIGN

Area ctn2 (inz)

Frame ARZ t
Spacing Stiffness Strength 2 2 cm (in.)
Sta.| ecm (in) Reqmt. Reqmt. em” (4n°) a/L)

50.8 (20) [6.65 (1.03) |1.94 (0.30) [6.65 (1.03) |0.132 (0.052)
76.2 (30) |4.45 (0.69) |2.00 (0.31) |4.45 (0.69) {0.058 (0.023)
£/4 |101.6 (40) |3.35 (0.52) 12.19 (0.34) [3.35 (0.52) [0.033 (0.013)
127.0 (50) {2.71 (0.42) |2.39 (0.37) |2.71 (0.42) [0.020 (0.008)
152.4 (60) §2.29 (0.34) {2.56 (0.40) |2.58 (0.40) |0.018 (0.007)

50.8 (20) |2.71 (0.42) |1.94 (0.30) |2.71 (0.042){0.953 (0.021)
32/4 | 76.2 (30) | 1.81 (0.28) {1.94 (0.30) [1.34 (0.30) {0.025 (0.010)
101.6 (40) |1.35 (0.21) |2.00 (0.31) [2.00 (0.31) {0.020 (0.008)
127.0 (50) {1.10 (0.17) [2.19 (0.34) [2.19 (0.34) (0.018 (0.007)
152.4 (60) {0.90 (0.14) |2.32 (0.36) [2.32 (0.36) [0.015 (0.006)

In simllar fashion the candidate structural concepts for the tank of the
nonintegral design were subjected to point design analysis to assess the rela-
tive merit of each concept. General instability analysis of the tank was
conducted using BOSOR4 to ascertain if frames were required to prevent this
failure mode. The concepts and associated stiffnesses used for this model
were described in Section 7.2.3.4. The tenk design for this model contained
no frames except at the forward and aft suspension points. The results of the
BOSOR4 bifurcated stability analysis showed that internal frames were not re-
quired to stabilize the tank design; therelore, thay were not considered in
the evaluation of the candidate concepts.

The tankage of the nonintegral design experiences only minor thermal
loadings and £light inertia loads; therafore, the predominate loading was
caused by the internal pressurization. Since the tank wall is teunsion de-
signed, the structural concepts were designed by applying the fatigue and
damage tolerance criteria. The basic tank wall cross-sectional data defined
using this criteria was in all cases sufficiently strong to meet the basic
strength requirements.

In general, the fatigue allowable defined for the operating condition
established the minimum skin gage, whereas the fail-safe criteria was usad
to define the cross-sectional area and strap requirements. Both circumferential
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and loungitudinal crack dawages were considered for the fail-safe analysis.
Table 59 presents the fatigue and fail-safe analysis (circumferential Zz=sze
conditior) conducted atr the two point design regioms. This data reflects all
the stiffened wall designs as well as the unstiffened design at these two
locations. All designs rejquire the same equivaleat axfal thickmess (t),
whereas the skin thickness of the stiffened concepts can approach the minimum
thickness cdictated by the fatigue criteria.

The rtequirzment for hoop straps was investigared using the loungitudinal
damage fail-safe criceria, see 7.2.3.2. Table 60 presents an example of the
analysis conducted at the upper fiber location of the quarter-length point
design region. This table presents the strap requirements for both the
stiffened and unstiffened designs as a function of a variable strap spacing.
The strap areas and their equivalent thicknesses for the stiffened skin de-
signs are slightly higher than those of the unstiffened design for all strap
spacing invescigated. This situation is caused by accepting the minizum skin
thickness and the correspondingly higher hoop stress dictated by the fatigue
criteria.

Integral weld lands are provided on the tank wall for the attachment
(spot welds) of the hoop fail-safe straps. The dimensions of rhese weld lands
were postulated to be the width of the strap 5.08 cm (2.0 in.) and one-~
quarter the thickness of the skin (t_,,). Typical equivaient thickness cal-
culations for these lands are included on Table 60.

Table 61 summarizes the results of tha point design analysis conducted
on the upper fibers at the quarter—-length location on the tank. These unit
weights reflect the component and total weights of the fuselage and tank as a
function of hoop strap spacing. Incignificant weight differences are noted
between the candidate concepts at any of the strap facings. The weight for
any of the concepts is approximately 23.9 kg/m2 (4.90 lbm/ftz) and is rel-
atively insensitive to the placement of the tank hoop fail-safe straps. The
corresponding unit weight data feor the lower fiber is shown in Table 62. The
same insensitive weight trends are noted between corcepts with all concepts
weighing approximately 21.5 kg/m2 (4.4 lbm/fr2).

The average circumferential unit weight and the component unit weights
at the upper, mid and lower fibers are shown in Figure 146 as a function of
fail-safe strap spacing for the tank quarter-length location. Because of
the very little variation in weight between any of the concepts, it reflects
both the stiffened and the unstiffened designs. An average unit weight of
22.6 kg/m? (4.62 lb/ftz) is noted at this tank locationm.

7.2.3.6.2 1Integral design: The candidate wall concepts for integral tank
design were subjected to point design analysis. These concepts included the
blade-stiffened and the zee-and tee-stiffened concepts. All concepts are one-
plece coaufigurations to minimize the potential sources of leaks.
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TABLE 61. - SUMMARY OF UPPER FIBER UNIT WEIGHTS AT THE QUARTER-LENGTH
LOCALION, NONINTEGRAL TANK DESIGN

_(a)

Hoop Strap Spacing ca (in.) 25.4 (10) 38.1 (15) 50.8 (20)

Fuselage®), kg/m? (1bm/fc?) | 11.068 (2.267) | 11.068 (2.267) | 11.068 (2.267)

Shell 10.224 (2.094) | 10.224 (2.094) | 10.224 (2.094)

° Frame C.845 (0.173) | 0.845 (0.173) | 0.845 (0.173)
=

S . | Tank, kg/m? (1bw/fcd) 12.865 (2.635) | 12.836 (2.629) | 12.831 (2.628)

5| snen 10.736 (2.199) | 10.736 (2.199) | 10.736 (2.199)

58 Straps 1.597 (0.327; | 1.753 (0.359) | 1.826 (0.374)

5a NOF 0.532 (0.109) | 0.352 (0.072) | (.273 (0.056)

Total, kg/w? (1bm/fr2) 23.934 (4.902) | 23.905 (4.896) | 23.900 (4.895)

Fuselage®), kg/m? (1bm/£e?) | 11.068 (2.267) | 11.068 (2.267) | 11.068 (2.267)

- Shell 10.224 (2.094) | 10.224 €2.094) | 10.224 (2.094)

= Frame 0.845 (0.173) | 0.845 (0.173) | 0.845 (0.173)
- @

25 < | Tank, kg/n? (bn/£e2) 12.875 (2.637) | 12.846 (2.631) | 12.836 (2.629)

gua Shell 10.736 (2.199) | 10.736 (2.199) | 10.736 (2.199)

EI3 Straps 1.714 (0.351) | 1.826 (0.374) | 1.889 (0.387)

NOF 0.420 (0.086) | 0.283 (0.058) | 0.210 (0-043)

Total, kg/m? (lbm/fr?) 23.943 (4.904) 23.916 (4.898)  23.904 (4.896)

(a) Tank fell-safe straps.

(b) Fuselage represents least-weight concept (hat stiffened) and correspond-
ing frame spacing 101.6 cm (40.0 in.).

(c) All incegral designs (blade-, zee-, and tee-stiffened concepts).

At the point design regions, each component associated with the defini-
tion ¢f a unit segment of structure was sized as a function of frame spacing.
These components included the basic panel, frame, fail-safe strap and non-
optimum factor; and were sized using the previously discussed design criteria,
analytical methods and poinot design environment.

The resultant panel cross-sectional data for the upper and lower fibers
at the quarter—-length location are shown in Figure 147. This figure presents
the equivalent thicknesses of the blade, zee and tee-stiffened designs as a
functior ¢f frame spacing. Due to the fail-safe requirements (circumferential
crack condition) all designs had the same thickness at the smaller frame spac-
ings; whereas. when the compression loads became dominant, the less efficient
compression design (blade) vequired 2 greater thickness a:t the higher frame
spacings.
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TASLE 62. — SUMMARY OF LOWER FIBER UNIT WEIGHTS AT THE QUARTER-LENGTH
LOCATION, NONINIEGRATL, TANK DESIGN

Hoop Strap Spacizg em (in.) ® 25.4 o) | 381 as) | so.s (20)

Fuselage® kg/w? (1bm/fc?)| 8.356  (1.711) | 8.35¢  (1.711) | 8.35%  (1.711)

3 Shell 7.509 (1.538} 7.509 (1.538) 7.509 (1.£38)

5g Frame 0.845 (0.173) | 0.845 (0.173) | 0.845 (0.173)

E‘E Tank, ks/m? (lbw/fed) T 13.153  (2.694) | 13.129 (2.689) [13.119 (2.687)

ea Shell 10.956  (2.244) | 10.956  (2.244) |10.956  (2.244)

= Straps 1.850 (0.338) | 1.806 (0.370) ; 1.289  (0.337)

NOF C.547 (0.112) | 0.366 (0.075) | 0.273  (0.056)

Totnl.ksrnz (lbn/ftz) 21.507 (4.405) | 21.483 (4.400) | 21.473 (4.398)

Fuselage'®) kg/n® (1bw/fr%)| 8.356 (1.711) | 8.354 (1.711) | 8.354  (1.711)

- Shell 7.509 (1.538) | 7.509 (1.538) | 7.509  (1.538)

338 Frie 0.845 (0.173) | 0.845 (0.173) | 0.845 (0.173)
i H [ ]

gL s Tank, kg/m? (1ba/fc?) 13.163  (2.696) | 13.139  (2.6v1) |13.119  (2.687)

Su 8 Shell 10.956  (2.244) | 10.956  (2.244) |10.956  (2.244)

“a Straps 1.787 (0.366) | 1.899 (0.289) | 1.953  (O.400)

NOF 0.420 (0.086) | 0.283 (0.058) | 0.210 (0.043)

Total, kg/m~ (lbw/ft2) 21.517  (4.407) | 21.492  (4.402) | 21.473  (4.398)

(a) Tank fail-safe atraps.

(b) Fuselage represents least=-weight concept (hat-stiffened) and corresponding frame
spacing 101.6 cm (40.0 in.).

(¢} All integral designs (blade-, zee-, and tee-stiffened concepts).

For each of thazse concepts, unstiffened skin panels were found to be
the lightest concept for the design of the mid-pmnels at the quarter-length
location. A panel thickness of 4.166 mm (0.164 in.), invariant with frame
spacing, was used for these designs.

The frames for these designs were analyzed in a manner similar to that of
the fuselage frames for the nonintegral design. Both strength and stability
were considered. Figure 148 presents these results along with added require-
ments imposed by the fail-safe criteria. An example of this fail-safe analysis
is summarized in Table 63 for tke 762 mm (30.0 in.) frame spacing design. Note
that the assumbed location and size of the damage dictates the respective area
of the frame or strap. The methods employed in this analyses are described in
the Analytical Hetyods Section.

324




E 280 510

E B 2461

e 5.00

g 22 b UPPER

3 4.90 = )

E * 23.8 -

?: NE 234 | 4.80

: 2

r - 20, 470 VG
£ T el = e

§ = 6 5 4.60 %
3 = nal \ip

E 3 4.50 |—

i S 21.8F

\——‘
'ﬁ 214 L_ 4.40 —
LOWER

1 210 r 4.30

¢

: 206 L9

6 10 B 1S 20
in.

4 L ] ] ] 1 1 X L 1 —
1 16 20 24 <8 2 36 40 4 43 52

STRAP SPACING em

A ol

Figure 146. - Unit weights vs strap spacing for nonintegral tank
{quarter-length point design regiom).

Table 63 describes the frame and strap requirements as a function
of the number of straps, but does nct indicate the selection process used
in defining the spacing for the minimum weight design. Table 64 summarizes
the frame area requirements due to stability, strength, minimum gage and fail
gafe. In addition, the strap area requirements for fall safe and the total
area of the frame and straps are presented. It can be seen from this table
that the fail! safe requirements dictate the aveas of the frames when no
straps or one strap is used; whereas, the stability requiremente design the
higher strap spacings. Using these frame areas and combining them with the
required strap areas a total equivalent thickness was obtained. Minimum-
weight designs are indicated for the two and threc strap designs. The smaller
number of straps was chosen for the 762 mm (30.0 in.) frame spacing design.

PRI
[ 4

The results of the analyses conducted on the hoop straps and frames
dictated the minimum-weight combination for each »f the frame spacings in-
vestigated. Table 65 sumrarizes these results and indicates the unit strap
- . areas, total strap areas and the equivalent thickness for each design.

RPN PN A T WETI BT PERT? (I G ARV A WAL

IRy

Integral strap weld lands and panel closeouts were postulated for each
tank design. The strap weld lands were similar to those described for the
nonintegral tenk. To provide for -attachment of the frames the panel stif-
feners were assumed to be tapered-out with a flat land of sufficient thick-
ness provided to carry the axial and bending stresses. These resuits are
presented in Tables 66 and 67 under the heading of nonoptimum factor (NOF).

.
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Tables 66 and 67 summarize the results of the poiut design analysis con-
ducted on upper and lower fibers at the quarter-length location. These
weights reflect the component und total weights of the tanx as a function of
the variable frame spacing. Ir general, at both locations the blade—stiffened
designs are competitive from a weight standpoint with the tee~ and zee-
stiffened designs at the lower frauwe spacings and are much heaviexr at the
larger spacings.

Figure 149 presents the total unit weight for the upper and lower fibers.
The total cross-sectional umit weight for each csndidate concept of the integral
tank design was defined by averaging the unit weights calculated at the upper,
side and lower circumferential locations. These results are presented in
Tigure 150 as a functjion of frame spacing. A minimum weight design of ap-
proximately 18.0 kg/m? (3.90 ib/£+2) is indicatud for the blade-stiffenmed pane
panel concept at a frame spacing of approximately 101.6 cm (40.0 in.). The
corresponding minimum weight designs for both the zee- and tee-stiffened
concepts occur at a frame spacing of approximarely 127 cm (50.0 in.). The
agsoclated average circumferential weight for both _of these designs is
18.3 kg/mz (3.75 1b/£t2). This affords a 1.0 ks/mz (0.20 1b/ft<) weight
saving over the blade-stiffened design.
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TABLE 64. - FRAME AND STRAP REQUIREMENTS FOR A 76.2 cm (30.0 in.)
FRAME SPACING DESIGN, INTEGRAL DESIGN
Frame Equivalent Thicimess ca (in.) Strap Total
Frane Equiv. Equiv.
Spacing No. Scabtlicy Screagth Mia. Fail-Safe Thk. Thk.
e (in.) |Straps Requts Reqate Gage Reqnta Dasign cn (in.) ca (in.)
76.2 (30.%), © 0.053 (0.021) |0.025 (0.010) {0.025 (0.010){/0.283 (0.072)[0.183 €0.072; o () 0.183 (0.072)
1 0.053 (6.021) 0.081 (0.032]]/0.081 (0.032)|0.028 (0.011)]0.109 (0.043)
2 D.053 (0.021) 0.046 (0.018)(0.053 (0.021)[0.030 (0.012)[0.08&4 (0.033)
3 0.053 (0.021) 0.030 (6.012)([0.053 (0.021)[0.030 (0.012)}{0.084 (0.033)
76.2 (30.0) 4 ig_u_sg_(uz_n_ 0.025 (0.010) {0.025 (0.010)|0.025 (0.010)[0.053 {0.021)0.033 (0.013)]0.086 (0.034)
TABLE 65. -~ SUMMARY OF MINIMUM-WEIGHT STRAF
< DESIGNS, INTEGRAL TANK DESIGN
I Total
Eracc Strap Strap Strap -
Spaciag No. Spacing Aiu 2 Area 2 t
b,ca (in.) Straps ca (in.) Ay em (in. %) Asmz {(10.%) = (ia.)
50.8 {20.0) 2 16.94 (6.67) 0.65 (0.10) 1.29 (0.20) 0.025 (0.010)
76.2 (30.0) 3 19.05 (7.50) 0.77 (0.12) 2.32 (0.36) 0.0320 (0.012)
101.6 (40.0) 4 20.32 {8.00) 0.77 (0.12) 3.10 (0.48) 0.030 (0.012)
127 0 (50.0) 5 21.16 (8.33) 0.65 {0.10) 3.23 (0.50) 0.025 (0.010)
<
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TABLE 656. — SUMMARY OF UPPER FIBER UNIT WEIGHTS AT THE
QUARTER-LENGTE LOCATION, INTEGRAL DESIGN

Unie Weight, kg/m? (lbw/sq ft)
Freme Spacing ca (in.) 50.8 (20) 76.2 (30) 101.6 (40) 127.0 (50)
Blade-Stiffened Design 27.38 (5.71) 24.95 (5.11) 23.58 (4,83 24.80 (5.08)
Shell 19.92 (4.08) 19.92 (4.08) 19.92 (4.08) 21.97 (4.50)
Franes 3.37 (0.69) 1.51 (0.21) 0.83 (0.17) 0.54 (0.11)
Strape 0.63 (0.13) 0.83 (0.17) 0.83 (0.17) 0.83 (0.17)
NOF 3.91 (0.80) 2.64 (0.54) 1.95 {0.40) 1.46 (0.30)
Zee-Stiffened Design 28.56 (5.85) 25.39 (5.20) 23.92 (4.90) 23.14 (4.74)
Shell 19.92 (4.08) 19.92 (4.08) 19.92 (4.08 19.92 (4.08)
Frames 3.37 (0.69) 1.5 (0.31) 0.83 (0.17) 0.54 (0.11)
Scraps 0.63 (G.13) 0.83 (0.17) 0.83 \0.17) 0.83 (0.17)
NOF .64 (0.95) 3.08 (0.63) 2.29 (0.47) 1.86 (0.38)
Fae—Stiffened Deaign 28.71 (5.88) 25.44 (5.2 26.72 (4.92) 23.24 (4.76)
Shell 19.92 (4.08) 19.92 (4.08) 19.92 (4.08) 19.92 (4.08)
Franes 3.37 (0.69) 1.51 (0.31) 0.83 (0.17) 0.54 (9.11)
Scraps 0.63 (0.13) 0.83 (0.17) 0.83 (0.127) 0.83 {0.17)
FOF 4.78 (0.98) 3.22 (0.66) 2.239 (0.49) 1.90 (0.29)

7.2.3.7 Screeuing results: The tank weight for each candidate concept of
the integral and nonintegral tanks was :calculated using the results of the
point design analysis. From these results the most-promising concept was
selected for each basic type of tank and used 8s the baseline configuration
for conducting the parametric studies and the investigation of the four
candidate fuel containment systems.

Caution should be exercised in interpreting these results since the pur-

pose was to screen the candidate wall concepts and not to conduct a compari-
son study between the two basic types of tanks.

The total tamk cross-sectional weight for each candidate concept of the
integral tank design was defined by using the average circumferential unit
weights at the two point design regions. Figure 150 preseats the average
circumferential unit weight as a function of frame spacing for the quarter—
length location. From these data the minimum weight designs were selected
and used to extrapolate the total weight of the tank comical sectioa.

Table 68 presents a summary of the unit weighta of the upper, mid and

‘lower fibers at each point design reglion. In addition, the average unit weight

of the tank at the point design regions and at the ends of the tank cone
are defined. This unit weight data was then converted to pounds per foot of
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TABLE 67. - SUMMARY 0 LOWER FIBER UNIT WEIGHTS AT THE
QUART: R-LENGTH LOCATION, INTEGRAL DESIGN
Untc Velght., kg/o® (lba/eq ft)
Fraze Spacing @ (ia.) 50.8 e 6.2 (30 101.6  (40) 127.0 50)
Blade-Stiffenad Design | 22.17  (4.54) | 19.58  (4.01) | 20.60  (4.22) | 22.70  (4.65)
Shell 15.28  (3.13) | 15.28  (3.13, | 17.63  (3.61) | 20.46  (4.19)
Frames 3.37  (0.69) | 1.51 (0.3 0.83  (0.17) 0.5  (0.11)
Strapa 0.63  (0.13) | 0.83  (0.11) 0.83  (0.17) 0.93  (0.17)
NOF 2.83 (0.58) | 1.90  (0.39) 1.27  (0.26) 0.88  (0.18)
Zee-Stiffened Design 21.97  (6.50) | 19.43  (3.98) | 18.36  (3.76) | 17.77  (3.64)
Shell 15.28  (3.13) | 15.28  (3.13) | 15.28 (3.1} | 1s5.22  (3.13)
Srames 3037 (0.6%) | 1.51  (6.31) 0.83  (0.17) | 0.5  (0.11)
Straps 0.63 £0.13; | 0.83  (0.17) 0.83  (0.17) 0.83  (0.17)
NOF 2.60  (0.55) | 1.81  (0.37) 1.32  (0.27) 1.07  (0.22)
Tee-Stiffaned Design 21.87  (6.48) | 19.33  (3.96) | 18.26  (3.74) | 17.72  (3.63)
Shell 15.28  (3.13) | 15.28  (3.13) | 15.28  (3.13) | 15.28  (3.13)
Frazes 3.37  (0.69) | 1.51  (0.31) 0.83  (0.17) | 0.5  (C.11)
Straps 0.63 (0.13) | 0.83  (0.17) 0.83  (0.17) | 0.83  (0.17)
NOF 2.54  (0.52) | 1.71  (0.35) 1.27  (0.26) | 1.03  (0.21)

conical length (average unit weight times mean diameter) and used to derive

the weight of the tank cylinders which are shown in Figure 151.

The zee- and tee-stiffened aft tank cones have approximately equal weights
of 2401 kg (5293 1b) each with the blade-stiffened desigc weighing 2500 kg

(5512 1b).-

the zee- and tee~stiffz=ned desigus.

cone weight.

A weight saving of approximately 1G0 kg (220 1b) is indicated for

Table 69 displays a tank weight for these
designs which includes the weight of typical closures in addition to the

The zee-stiffened design was selected as the most promising concept for the
integral tank design since no appreciable variation in weight is noted between
The zee-stiffened tank would be slightly

the zee- and tee-stiffened designs.
less complicated to manufacture, i.=., lower cost.

The unit weights for the unstiffened and stiffened concepts of nonintegral

tanks 1re approximately equal.

The unit weights of the upper and lower

fibers at the quarter-length location were gpreviously shown in Tables 61

and 62.

for the integral tank design.

this analysis.

The average unit weights were derived by the same methods described
Table 70 contains the unit weights used for
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TABLE 68. SUMMARY OF UNIT WEIGHTS FOR INTEGRAL TANK DESIGN

Onit Welights kglnz {1bm./sq.ft.)

Concept X=0 X= /4 X=3 /4 Xe

Blade-Stiffened 20.26 (4.15) 19.04 (3.90) 16.60 (3.40) 15.38 (2.1%)

Upper f[iber - 23.44 (4.80) 22.07 (&.52) -—
Mid fiber -_ 16.11 (3.30) 13.18 (2.70) —
Lover fiber -— 20.51 (4.20) 18.06 (3.70) -—

Zee— and Tee-Stiff. 19.53 (4.00) 18.31 (3.75) 15.92 (3.26) 14.65 (3.00)
Opper fider 23.19 (4.75) 21.82 (4.47)

Mid fiber -— 16.11 {3.30) 13.18 (2.70) —
Lower fiber -— 17.82 (3.65) i5.62 (3.20) -_—

Figure 152 presents the development of the tank and fuselage cone
weights for a typical aft rank. Similar to the integral design, a tank and
body weight was estimated and is shown on the previously presented Table 70.

All the candidate concepts for the nonintegral tank design exhibited
approximately the same weight when compared on a theoretical unit weight
basis; where in reality, the tanks fabricated with the stiffened wall con-
figuration would have a higher degree of complexity involved in the design of
discrete regions, i.e., head/cone junctures, suspgension points, tank
penetrations, etc. In addition, the unstiffened wall concept has a decisive
cost advantage over the stiffened concepts when the basic problem of fabrica-
tion stiffened one~pilece wall designs on a conical surface are addressed.

If modification of the minimumweight proportions are attempted to ease the
fabrication problems additional weight penaities are incurred for the inte-
grally etiffened concepts.

In conclusion, the unstiffened wall concept was selected for the non-

integral tank design because of its equal or lighter weight and its lower cost.

7.2.4 Parametric studies. - Structural parametric studies were conducted to
appraise various aspects related to the design of LH; fuel containment tarks.
In general these studies encompassed basic design studies on the dome shape
and suspension systems, and investigations to assess the effects of pressure
(higher tank operating pressures and pressure stabilization) and a variatle
life on the tank design.

7.2.4.1 Dome shape study: Candidate dome configurations applicable to a con-
stan® voiume liquid hydrogen tank containment system are described in this
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TABLE 69. - AFT TANK WEIGHT '
t
Weight g (lom)
Nonintegral Integral
Item All Concepts Zee and Tee Blade

L
Tank 2253 (4968) 2942 (6485) 3041 (6704) &

Cvlindrical section 1746 (3850) 2401 (5293) 2500 (5512)

Domes 337 (743) 371 (817) 371 (817)

Divider dome 170 (375) 170 (375) 170 (375)

Body Shell 1516 (3342) - - - _

Total | 3769 (8310) 2942 (6485) 3041 (6704)

TABLE 70. - SUMMARY OF UNIT WEIGHTS FOR THE NONINTEGRAL TANK DESIGN
Unit Weight kg/m2 (1bm/sq ft) i
All Concepts - X=0 x= ¥4 x=34/4 X=2 71
Tank 13.96 (2.86) 12.89 (2.64) 10.69 (2.19) 9.57 (1.96) g
Upper fiber 13.96 (2.86) 12.84 (2.63) 10.64 (2.18) 9.52 (1.95) ?
Mid fiberx 13.77 (2.82) 12.74 {2.61) 10.69 (2.19) 9.67 (1.98) 2
Lower fiber 14.35 (2.94) 13.13 (2.69) 10.69 (2.19) 9.47 (1.94) 2
Body 10.30 (2.11) 9.72 (1.99) 8.54 (1.75) 7.6 (1.63) %
Upper fiber 11.77 (2.41) 11.08 (2.27) 9.72 (1.99) 9.03 {1.85) é
Mid fiber 16.30 (2.11) 9.72 (1.99) 8.54 (1.75) 7.96 (1.63) i
Lower fiber 8.84 (1.81) 8.35 (1.71) 7.37 (1.51) 6.88 (l.41) j
section. Specifically, the geometric proportions and the assoclated weight, é
internal volume, and surface area of the candidate dome configuratlon are ‘
studied. For each dome configuration, total tank weight is calculated and b
evaluated with respect to airplane direct operating cost (DOC). By selecting 3
the DOC as the objective function, the proportions of the least-costly dome- :

tank configuration are determined.

The nonintegrated tank design shown in Figure 153 was selected as. the

baseline for the study.

The three candidate dome configurations as depicted i

in Figure 154 include a hemispherical head and the general families of ellip-
soidal and torispherical heads. For the preliminary analysis of =i+ candidate
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head configurations, thiwn-shell theory (membrane) was used. The dome shells
were considered to be coanstructed of isotropic material with variable wall-

thickness and subject only to intermnal pressurization. The operating design
stress curves indicated that a fatigue allowable of 158 579 kPa ("> 000 psi)
was nmost suitable for the analysis. The von-Mises failure criter: .

was used. Ir this expression, %1 and 9 are the meridional and hoop stress,
respectively. For axisymmetric shells of revolution subject only to internal
pressure, these stresses are given by the relationships:

o = pr2/2t
o, = (xr, - T 2/2: Y/
2 T PiTy T Ep L)/,

vhere p is the intermal pressure and t is the wall thickness. The neridional

radius of curvature r; and the hoop radius of curvature T2 for the candidate
dome configurations are givem in Table 71.

Parametric studies were conducted to define the proper dome shape, con—
sidering both tank weight and volumetric efficiency. Candidate dome config~
urations were applied to the large diameter dome of the nonintegral tank
design. Standard numerical techniques were used in the Preliminary strength
analysis to size the variable wall thickness requirements and obtain needed
parameters such as dome radii of curgéture, surface area and volume, and doume
weight.

Figures 155 and 156 show the variation of surface area, volume, and
weight as a function of the specific geometry parameter for the families of
ellipsoidal and torispherical heads, respectively. The hemispherical dome is
represented in Figure 155 by an a/b = 1.0. TFor the ellipsoidal configurationm,
udnimum weight of 215 kg (47 . pounds) is obtained at an a/b = 1.3. The
torispherical design yields a minimum weight of 222 kg (489 pounds) at an
angle ¢ of 0.95 radians. The hemispherical dome is approximately 1l7-percent
heavier than the leastweight ellipsoidal dome.

Tank and fuselage geometric proportions were determined for a comstart
volume tank. The weights were calculated for these constant volume tank
configurations and included the tank, fuselage shell, insulation and fuel for
the nonintegral tank design. The fuel boiloff welght was accounted for as the
length/surface area varied. Figure 157 shows the resultant welights of the
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TABLE 71. — RADII OF CURVATURE OF CANDIDATE DOME CONFIGURATIONS

Radii of Curvature
Configuration Meridional (rl) Hoop (rz)
Hemispherical r r
Elliptical r23(b2/a&) ((a/b)4y2+ :‘tz)l/2
Torispherical a a(l +b/r)
(toridal segment) - °

See Figure ]53 for geometry.
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forward and aft tanks as a function of dome parameter. Using these weights
and their corresponding length and associared diameter changes, the ASSET
program was used to assess the effects on aircraft L/D for a constant payload-
range mission. The cost comparison date (DOC) for the resultant aircraft are
shown in Figure 158 as a function of the specific dome parameters. A summary
of the minimum aircraft DOC configuration for each dome shape is shown in
Table 72. The aircraft utilizing ellipsoidal heads on the tanks display a
minimum DOC of 0.9852 ¢/s lm (1.8246 ¢/seat-nmi) for a dome aspect ratio of
1.60. The associated tntal weight and fuselage length are 37065 kg

(81 715 pounds) and 67.97 m (223.0 feet), respectively. The corresponding
minimum DOC for the torispherical head design is 0.9852 ¢/s km (1.8245
¢/seat-nmi). for a ¢ = 0.36 radian dome. A total weight of 36 902 kg

(81 355 pounds) and a fuselage length of 68.2 m (223.7 feet) are noted for
this design.

Since the DOC for both the elliptical dome and torispherical dome is
approximately 0.9854 ¢/s km (1.825 ¢/seat-n.mi.), these designe vwere subject
to a more detailed anazlysis using the BOSOR 4 computer program. This amalysis
included the bending as well as the membrane thickness requirements of a
shell under intermal pressure load. The von Mises failure criteria was
also used in this analysis. Figures 159 and 160 present the undeformed
shapes of the elliptical and torispherical domes, respectively.

These models were subjected to a nonlinesr elastic analysis using the
SOSOR. prograr with internal pressurization being the only loading comsidered.
As an example of the rasults, the stresses associated with the elliptical dome
are shown ia Figure 161. The arc length is measured from the apex to the
equator of the dome, and along the cylinder. The upper plot i1eflects the
hoop stress on the outer fiber (szg) as the function of the meridian length;
whereas, the two lower plots depict the equivalent stresses (von Mises criteria)
on the innter Sgy and outer S_ . fibers. respectively. Maximum equivalent
stresses of 158 585 kPa (23 058 psi) and 137 900 kPa (20 00D psi) are noted
for the dome and cylinder, respectively.
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TABLE 72. - COMPARISON OF

DATA FOR MINIMUM DOC DOMES CONFIGURATION

Item Ellipsoidal Torispherical

Dome Geometry

Proportions a/b = 1.6 ‘ ¢= 0.36

Height m (ft) 1.83 (6.01) 2.29 (7.51)
Weight kg (1b) 37 065 (81 715} 36 902 (81 355)

(Incl- tank, shell,

insul. and fuel)
Fuselage Length m (ft) 67.97 (223.0) 68.18 (223.7)
DOC ¢/seat km 0.9852 (1.8246) 0.9852 (1.8245)
(¢c/Seat n.mi.)

The maximum equivalent stresses for the torispherical dome are 124 990 kPa
(25 600 psi) and 111 319 kPa (22 800 psi) for the dome and cylinder, respec-
tavely. Additiomal evaluation indicates a weight penalty required to sustain
a 112 296 kPa (23 000 psi) allowable of approximately 2.3 kg (5 1b) per head
oT a total weight increment of approximately 9.1 kg (20.0 1b) for rhe combined

forward and aft tanks.

A summary of the results of this study are presented in the following

table.
Evaluation Function
Concept Minimm Wt. Minimum DOC

Ellipsoidal Design

a/b 1.30 1.60

Weight, kg (1b) 215.0 (474) 240.4 (530)
Torispherical Design

$, radians 0.95 0.36

Weight, kg (1b) 221.8 (489) 234.1 (516)

s
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Considering minimum-weight dome designs the ellipsoidal design is the
least weigh® design and indicates a weight saviag of 6.8 kg (15 1b) (5-percent)
over the equivalent torispheric. ' ‘lesign.

When DOC is the object function and the dome weight of the two designs
are compared, the torispherical design offers the least weight with a weighe
saving of approeximately 3~percent over the ellipsoidal design. There 1s no
appreciable difference in the aircraft DOC between the two minimum DOC designs.
Both designs have a DOC of approximately 0.9854 ¢/S lm (1.825 ¢/S n.mi.).

Based on these results, neither design affords a clear cut decision as
to the preferred dome configuration. The =lliptical dome with the winimum
DOC configuration (a/b = 1.6) was arbitrarily selected.

7.2.4.2 Tank life investigation: A structural study was conducted to assess
the mass trend associated with varying the tank design life, i.e., planning on
replacing the tank during the 50 000 hours of service lifa required of the
aircrafe.

Representative tank wall and closure concepts were selected for each
basic tank design (integral and nonintegral configurations) using the results
of the prior concept screening analysis and dome shape study. These represen-
tative ranks were sized at selected point design regions using the applied
loads and pressure schedule defined for the concept screening analysis and
the criteria specified in Section 7.2.1.

The three tank lives considered were the full aircraft life (50 000 hr),
one half-life (25 000 hr) and one-third life (16 700 hr). For fatigue con-
siderations both limit and ultimate tension design allowables were determined
for each respective tank life. These allowables are presentad in Figuce 162
for baseline aluminum alloy 2219-T851. All ailowables dealing with unpres-
surized fuselage shell structure are the zame as those presented in the con-
cept screening study.

The minimum weight tank wall designs were determined using the same
methods described in the abalytical methods section of the concept screening
study. Using these methods, point designs were determined for a range of
frame spacings for the integral tank design ard as a funcction of the hoop
fail-safe strap spacing for che nonintegral tank. The wall thicknesses of
the tank closures were defined using the theory described in the dome shape
study. The results of this study are presented in the following sectionms.

7.2.46.2.1 Nonintegral Tank Design: An unstiffened skin design, the most-

promising concept resulting from the concept screening study, was used in the
life study <valuation for nonintegral tanks. Due to the predominarce of the
fail-safe requirement, no change was found as a result of the 1ife criterion.
Subccnponents, straps, and NOF also ware found to be invarianr with length of
service life. The fuselage shell was not considered as a replacement item;

hence, it was not effected by a change in life criterion. Consequently, the
non-integral tank weight remains constant as a function of design life and is
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identical to the data presented in the concept screening study for all
circumferential locations at both quarter point statioms.

Closures similar in design to those used for the integral tank were
incorporated into this design also. Ellipsoidal domes with an aspect ratio
(a/b) = 1.6 were used in addition to restricting the minimum gage to 1.27 wm
(0.050 im).

Thus, the only variation due to design life specification results from
the change in the tank heads. Adding the tank head variation o the constant
tank body weights, a total tank weight for each life is evolvad and may be
evaluated to find the minimum DOC life concept.

7.2.4.2.2 Integral Tank Design: As a result of the concept screening
analysis, a hybrid structural approach utilizing both the zee-stiffened and
unstiffened wall concepts was uced for the integral tank design. Circum-
ferentially, the stiffened wall concept was incorporated in the design at

the relatively highly loaded upper and lower quadrants; while the unstiffened
skin was employed at the side quadrants due to the lower loadings.

An example of the type of data obtained is summarized in Figure 163,
This figure displays a summary of the point design data for the upper fiber
at the tank quarter-lemgth station. The upper figure shows the variation in -
wall thickness with life, the center figure displays che component and tctal
uait weight for a representative life, and the lower figure depicts rhe total
unit weight of the tank for each life investigated.

The wall thickness variations shown in the abeve figure incorporate
longitudinal straps in the design to meet the fail-safe requirements imposed
by the high temsion loads. These fail-safe straps have an area of 1.29 cml
(0.2 inz) aad are cencered between the stiffeners. The variations in the
tank wall thicknesses are primarily attributable to the change in minimum skin
thickness as a function of fatigue life. Dominance of the fail-safe require-
ments results in a constant equivalent thickness over the range of frame
spacings. '

The equivalent panel thicknesses were then combined with the calculated
thicknesses of the frames, circumferential fajil-safe straps and non-optimum
factors (NOF) to obtain a total panel weight. All of the subcomponents;
frames, straps and NOF, vary with length of service life. A typical plot of
the components and total unit weights for the full-life condition are shown
in the middle plot of Figure 163.

The total weights for each life are shown in the lower Plot of Figure 163 as
as a function of frame spacing. This plot reveals continuously decreasing
values which are due to the effect of the subcomponents as the panels remain
constant over the range of frame spacing. Thus, for this range of frame spac-
ings, each life has a minimum value at a frame spacing of 177.8 cm (70 1in.) with
the third-life tank the lightest at 22.5 kg/m? (4.61 1b/£e2), followed by the -
half- and full-lives at 22.6 kg/m? (4.63 1b/fr?) and 22.8 kg/m? (4.68 1b/ft2),
respectively. Note the maximum variation in weight at this spacing is only
0.3 kg/m? (0.07 1b £t2).
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An unstiffened panel design of 2.03 em (0.164 in.) thickness was employed

-at midfiber location. Fail-safe consideratiomns design these panels; hence

there was no variation in thickness with life. Panel thicknesses were com-
bined with the various applicable subcomponents to obtain both the unit and
total weight for this location. As with the upper fiber locatioca, the mid
fiber location exhibits the same continuously decreasing total weight trend
with tank life. Thus again, 2 minimum spacing of 177.8 cm (70.9 1n.)
provided tha lightesi structure with all designs weighing epproximately

12.9 kg/m2 (2.65 1b/ft2). A weight variation of only 0.1 kg/m2 (0.02 1b/f£t2)
is noted between designs.

A symmary of the results of the lower fiber point design analysis is
presented in Figure 164. The variation in wall thickness for each tank-life
(upper plot) is comstaut for frame spacings less than 127 cm (50 in.) with no
variaticn due to change in life because of the circumferential damage fail-safe
requirements. Uanlike the upper fiber location, where longitudinal Straps were
employed, the lower fiber anmalysis indicated that increasing the skin thick-
ness was # more efficient (i.e., lower weight) method of meeting the fail-safe
requirements. The maximum lower fiber meridional temsion load is approximately
one-half of that on the uppar fiber. Thus, for this region, the skin was not
held to the minimum thickness dictated by fatigue for the respective 1life but
was maintained at a level commensurate with the fail-safe requirements. The
frame spacing region above 127 cm (50 in.) shows an increasing thickness with
2 variatiorn from one life criterion to the next. Designs within these Spac-~
ings are primarily controlled by local buckling with the fail-safe require-
ments becoming less critical as the frame spacing is increased.

Similar to the upper fiber analysis, plots of the component and total
unit weights for the lower fiber were comstructed for each tapk life. The
component unit weights for the full-life condition are presented iu the
center of Figure 164. The total weights are shown in the lower figure and
indicates minimum weight designs at 127 cm (50.0 in.) frame spacing for each
of the life intervals investigated. The corresponding total unit weights for
these designs are approximately the same, i.e., the heaviest weight design
(full-life) has a weight of 18.5 kg/mZ (3.78 1b/£t2), which is only 0.05 kg/m2
(0.01 lb/ftz) heavier than those designed for half- and third-life Zntervals.

An average equivalent thickmness for the circumference at the quarter
length station was calculated using the results of the analysis conducted on
the upper, mid and lower fibers. These data were plotted as a function of
frame spacing, as precented in Figure 165. Minimum-weight frame spacings of
134.6 cm (53.0 in.), 137.2 cm (54.0 in.) and 142.2 cm (56.0 1in.) zre noted
for the full-, half- and third-life designe, respectively. The lightest
weight tank is the third-1life design which weighs 16.9 kg/m2 (3.47 1b/ft2)-
It iz only 0.15 kg/m? (0.03 1b/fr2) lighter than the heaviest design
(full-life). ,

The minimum weight design data at the quarter-length station were used
in association with the corresponding data at the three-quarter length
statlon to calculate the weighi of the tank cyclinder for each design life.
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In addition to calculating the cylinder weights, the weights of ellipsoidal
tank domes wvith an a/b ratio of 1.6 and a minimum wall thickness of 0.13 cm
(0.05 1ir.) vere estimated. Combining the cylinder weight results with the
fore and aft tank dome head designs provided a total tank weight. The results
are reported in 7.2.4.2.3.

7.2.4.2.3 Conclusions: The following table presents the tank weights,
excluding -“nsulation, for the integral and nonintegral tank designs. The
values shown reflect the weight of both the forward and aft tanks.

Tank Weight kg (1b)

Nonintegral Integral
Tank Design Design Design
Full-Life 9218 (20 322) 7081 (15 612)
Half-Life 9181 (20 240) 7039 (15 518)
Third-Life 9135 (20 140) 6989 (15 408)

For both tank designs, only small changes in weight are noted as the life
varies. A weight decrement of 82 kg 7182 1b) is noted for the third-life
design wvhen compared to the full-iife design for the nonintegral tank. Simi-
larly, a weight decrement of 93 kg (204 1lb) is noted when the same life designs
are compared for the integral tank. These small weight savings offered by the
reduced life tank designs translate into an insignificant decrement in aircraft
DGC that would not off-set the initial investment and installation costs for
replacing the tanks.

7.2.4.3 Tank Pressurization Study: This study was undertaken to assess the
impact on airplane weight and DOC elicited by using higher tank pressures.
Three pressures were studied, including the baseline nominal tank pressure
of 145 kPa (21 psia). The two higher nominal tank pressures were 207 kPa
(30 psia) and 276 kPa (40 psia.)

Both integral and nonintegral designs were investigated in this study.
For the integral tank design, the one-plece zee-stiffened configuration was
employed; whereas, for the nonintegral tank an unstiffened wall design was
utilized. These configurations were the most-promising concepts surviving the
concept screening analysis. Ellipsoidal tank domes, with their associated
minimum DOC parameters, were used for both tank designs based on the results
of the previously reported dome shape study. Total tank weights were thus
defined for both basic types of tanks.

The teasion loads corresponding to the three pressure cases are shoun
in Table 73. These loads are combined loads (airload, pressure and thermal)
where only the membrane forcas due to the internal pressurization are multi-
plied by the ratio of pressures. The criteria and analytical methods are
defined in Section 7.2.1 and 7.2.3.2.
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9.2.4.3.1 RKonintegral Tank Design: The pressurization study conducted on the
nonintegral tank design was performed using the minimum-weight design from the
concept screening study, i.e., an unstiffened wall configuration for the tank
with s hat-stiffened fuselage. The same panels designed for the concept
screening study were used as the baselins (145 kPa (21 psia)) tank design. A
different ser of panels was sized for each higher pressure case. The various
wall thicknesses at the quarter length station are presented in Table 74. All
of these designs are fail-safe critical at each circumferential location for
2ach nominal tank pressure. As such, they are constant over the range of
strap spacings. The subcomponents (straps and NOF) are increased frum the
baseline case by means of load ratios for eaclh higher pressure with variations
circumferentially but not longitudinally. The various components are combined
to define the total unit weights. There is an insignificant variation in unit
weight wita strap spacing st each circumferential location. Table 75 presents
the minimum weights for each pressure and circumferential location, all of
vhich occur at the largest strap spacing 50.8 em (20.0 in.). The average
circumferential weights are also shown. These average unit weights are plotted
versus strap spacing in Figure 166. All of the nonintegral designs reveal
small variations with strap spacing and minor effects of the subcomponents
with the design being cominared by the weight of the panel.

The designs of the three-quarter length station were extrapniated, via
load ratios applied to the one quarter length location. The weights of these
two point design regions were then combined with weigiice of the tank domes to
obtain a totsl tank weight for each pressure intensity.

7.2.4.3.2 Integral Tank Design: At the quarter length station the zee-
stiffened panel concept was evaluated at the upper fiber location with
respect to frame specing for each candidate pressure. The wall thicknesses
fcr these designs are constant at 0.721 cm (0.284 in.), 0.853 cm (0.336 in.),
and 1.036 (0.408 in.), for the design pressures of 145, 207, and 276 kPa

(21, 30, and 40 psia), respectively, regardless of frame spacing. As noted
previously, all of the upper fiber designs contain longitwdinal fail-safe
straps centered between the stiffeners with an area of 1.29 cm? (0.20 1n2).

The dominance of the fail-safe requirements et 145 kPa (21 psia) and the
combination of fail-safe and complex stress requirements at the higher pres-
sures, accounts for the constant equivalent thickness over the range of frame
spacings. The panel equivalent thicinesses are combined with the subcom-
ponents (straps and frames) and the nonoptimum factor to obtain the total unit
weights which are shown in Tigure 167.

The only subcomponent variarion experienced was the increase of the cir-
cumferential strap equivalent thicikness which was found by means of load
ratios applied to the baseline case. The strength consideration in the frame
design is generally not a controlling factor, especially at larger spacings,
nor is the nonoptimum factor (NOF) variation of great enough magnitude to be
accounted for,
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276 (40.0)

0.787 (0.310)

0.782 (0.308)

0.795 (0.313)
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TABLE 74. - VARIATION OF TANK WALL THICKNESS WITH INTERNAL
PRESSURE, NONINTEGRAL DESIGN
Nominal (L)
Tank Tank Wall Equivalent Thickness, cm (in.)

Pressure
kPa (psia) Upper Fiber Mid Fiber Lower Fiber Average
145 (21.0) 0.389 (0.153) 0.384 (0.151) 0.396 (0.156) 0.386 (0.152)

207 (30.0) 0.577 (0.227) 0.572 (0.225) 0.58¢ (C.230) 0.577 (0.227)

0.787 (0.310)

10))

Quarter length point design region.

TABLE 75. - VARIATION OF TANK UNIT WEIGHT WITH INTERNAL
PRESSURE, NONINTEGRAL DESIGN

2)

Quarter lemgth point d=sign region

Nominal
Tank Tank Unit Weight, kg/mz (1b/sq ft)(l)(z)

Pressure

kPa (psia) Upper Fiber Mid Fiber Lower Fiber Average
145 (21.0) 23.92 (4.90) 22.46 (4.60) 21.48 (4.40) 22,56 (4.62)
207 (30.0) 30.08 (6.16) 28.76 (5.89) 27.73 (5.68) 28.86 (5.91)
276 (40.0) | 37.11 (7.60) 35.74 (7.32) 34.71 (7.11)v 35.84 (7.34)
1)

All data reflects a fail-safe strap spacing of 350.8 cam (20.0 1n.)
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The unit rotal weight olcts display continuoucly decreasing curves with
a decelerating rate as frame spacing increases. A drop-off of the subcom-
ponent effect is indicated by the decreasing curves for a comstant panel
weight. Minimum-weight panel designs are found at the maximum frame spacing
investigated, 152.4 cm (60 inches). As expected, the panel designed for 145 kPa
(21 psia) 1s the lightest and the 276 kPa (40 psia) the heaviest. Minimum-
weight designs for the 145 kPa (21 psia), 207 kPa (30 psia) and 276 kPa
(40 psia) are 22.8 kg/m2 (4.66 1b/£t2), 26.7 kg/w? (5.46 1b/£=2) ard 31.9
(6.53 1b/ft2), respectively.

The panel concept at the mid-fiber location is the fall-safe critical,
unstiffened skin configuration with thicknesses of 0.417 cm (0.164 in.),
0.622 cm (0.245 in.} and 0.851 cm (0.335 in.) representing 145 kPa (21 psia.),
207 kPa (30 psia.), and 276 kPa (40 psia.), respectively. These thicknesses
are constant over the range of frame spacings. Similar to the upper fiber
total weight curves, the mid-fiber location has a winimum-weight spacing of
152.4 em (60 in.) and corresponding welghts of 13.1 kg/w? (2.68 1b/ft2),
19.3 kg/m? (3.96 1b/£t2) and 26.3 kg/m? (5.38 1b/ft2) for 145 kPa (21 psia.),
207 kPa (30 psia.), and 276 kPa (40 psia.), respectively.

The variation of the panel thicknesses for the lower fiber locatiun at
the quarter length station are presenteld in Figure 168. Note that the
145 kPa (21 psia.) case does not emrloy longitudinal fail-safe straps but
that they are included in the 207 kPa (30 psia) and 276 kPa (40 psia) cases.
This situation is necessitated by the added temsion load brought on by the
higher pressures. The straps are centered between stiffemers with an
arez of 1.29 em? (0.2 in2). The use of straps for the 145 kPa (21 psia.)
case, or the deletion of straps for the higher pressures, would result in
much higher equivalent thicknesses. Alchough the usage indicated in Figure 164
does not alter the one-to-one comparison, the designs represented are minimum
weights.

With reference to Figure 168, the nonlinearities between the panel thick-
ness curves can best be explained by describinz the critical failure modes for
each design. The panels designed for the baseline pressure case (145 kPa
(21 psia)) are fail-saf: critical at the lower frame spacings with local
buckling beroming predominate as frame spacing increases. For the 207 kPa
(30 psia) design condition, fail safe, strength, and local buckling modes
are active at various frame spacings. The fall-safe criteria are dominate
at the lower frame spacings, whereas the basic strength and local buckling
modes constrain the designs at higher spacings.

The further increase of pressure to 276 kPa (40 psia) results in fail-
safe dominance for all frame spacings. The cross-sectional geometry is pro-
portioned by basic strength and local buckling requirements.

Plots of the total weight at the lower fiber location are presented in
Figure 169. A minimum weight frame spacing is noted for each pressure con-
dition. The correspording weights for these designs are 17.8 kg/mz
(3.64 .1b/£t2), 20.5 kg/m? (4.19 1b/£ft2) and 25.1 kg/m? (5.14 1b/ft2) for
the 145 kPa (21 psia), 207 kPa (30 psia) and 276 kPa (40 psia) conditioms,
respectively.
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At the quarter-length station, the unit weights of the panel designs at
the three circumferential locations are averaged to obtain a unit welgiit for
the complete cross-section which 1s presented in Figure 170. Optimum frame

spacings of 137 cm {54 4n.), 127 cm (50 in.), and 127 cm (50 in.) are noted for

the 145 kPa (21 psia), 205 kPa (30 psia) and 276 kPa (40 psia) pressures cases,
respectively. The corresponding weights are 16.7 kg/mz (3.43 lb/ftz),
21.9 kg/m? (4.49 1b/fel) and 27.7 kg/m2 (5.67 1b/ftl), respectively.

The unit weights at the three—quarter lemgta station were obtained by
extrapolating, using load raties, the unit weights at the quarter length
station. These data were then combined with the weights of the tank domes
designed for the various pressure cases to calculate the total tanmk welghts
which are presented in Section 7.2.4.3.3.

7.2.4.3.3 Conclusions: The results of the tank pressurization study are
shown in Table 76 for both the nonintegral and integral tanks. Optimum tank
welghts are shown, in addition to weight of the body shell required in con-
Junction with nonintegral tanks over the tank conical section. As would

be exvected, the weight of the nonintegral tank is very nearly directly pro-
portional to nominal design pressure. This is not the case for the integral
tanks, where a significant porrion of the tank cylinder is designed by body
shear and bending loads in addition to tank pressure loads. The results are
also plotted in Figure 171 and show that as tank pressure is increased the
tank weights tend to converge. This is due to the reduced influence of body
loads on the integral tank at higher pressures.

Table 77 shows the optimum tank and body shell thicknesses along with
tank dimensions used in this study. Using the results of the concept screen—
ing study, it was found that the weight of the tank conical section could be
approximated (within 1%) by the following equation:

(

W L tank cone)
tank cone

¥o.251 * ¥o.751) ( 2

The above equation was used to calculate the weight of the tank conical
section and body shell.

The effect of higher tank pressures on liquid hydrogen boiloff is
reported in section 7.1.6.2.3. That analysis shows that approximately 213 kg
(470 1b) of LH, could be saved from being vented in flight if a tank pressure
of 276 kPa (40 psia) is used instead of the nominal value of 145 kPa (21 psia).
A similar weight of LH2 could be saved from being vented during the tank £111-

ing operation, however that is a less valuable saving because the vent gases
are recovered and reliquefied.

In any eveat, design for the higher tank pressure is not a worthwhile

proposition becduse the tremendous welght penalty associlated with the structural

design makes the cost saving afforded by the reduced boiloff trivial by
comparison.
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TABLE 77. - TANK PRESSURIZATION STUDY AFT TANK

—
| NONINTEGRAL - Optimum €, em (in.) (imcluding frames and fail-safe srraps)
Nominal Pressure kPa (psia)
Location on Tank
Circumference Body Shell 45 (21) 207 (30) 276 14Q)
114 kY734 L/4 /6L L/4 34 2 L4 /e L
Gomer 0.399 0.358 0.465 0.368 0.636 0.546 0.962 0.752
PP (0.157) | (0.141)} (€0.183) | (5.145)] (0.27%) | (e.215) | ¢0.371) | (0.296)
wie 0,266 | 0,231 0. ¢80 0. 368 0.688 0.546 0.940 0.752
e (0.104) | (0.091)| (¢0.181) | (0.145) | (0.271) | (0-215) | (0.370) | (0.296)
Lover 0.302 0.265 0.475 0.368 0.701 | 0.5s6 0.953 0.752
(c.119) ! (0.106)| (0.187) ; (0.145) | (0.276) | (0.215) | (0.375) (0.296)
T e 1) 0.307 0.272 0.465 0.368 0.691 0.546 0.945 0.752
e . 0.122) | ¢0.107)( (0.183) | (0.145)| (5.272) | (0.215) | (0.372) | (0.296)
AVR. L e/a’ (osf 8.50 7.52 12.89 10.20 19.14 15.14 26.17 20.8C
v kg/a” (psf) .73 | (1.56) | (2.64) 2,09y | (3.92) | Guiey | (.36 | (a.26)
Dla. ~m (£c) 5.88 .7 5.31 4.20 5.31 4,20 5.31 4,20
: (19.30) | (i5.65 (17,423 | (13.79) | (17.43) | (13.79) | (17.43) | (12.79)
te e 157.0 112.7 215.2 134.7 319.5 199.9 436.8 276.7
Tank Unit We-ka/s (8/20) digaslsy s |aee.e) | (90.5) [@la.)  [.3)  [293.5)  [(184.6)
Tank Cone Wz. ~ kg (1b) 132e 1723 2558 3505
(L Tank (2928.4) (3799.2) (5639.8) (7726.1)
Cone = 9.852 (32.32'))
TSTEGPAL - Optinum ?. cm (in.) (including frames and fail~safe sfraps)
i Nominal Pressure - kPa (psia)
Location on Tank {
Circumference ] 145 (21) 267 (30) 276 (40)
: L/4 3/4 L L/4 374 L L/4 /e L
Upper 0.836 0.798 0.975 0,904 1.166 1.057
€0.329) | (0.314) | (0.384) | (0.356) | (0.459) | (¢0.216)
wid 0.475 0.38% 0.701 0.561 0.950 0.762
(0.187) | (0.151)| (0.276) (0.221) [ ¢0.374) | (0.300)
Lover 0.643 0.559 0.790 0.676 0.922 0.787
€0.253) | (0.2200 [ ¢3.311)( (0.266) | (C.363) | (0.310)
AvB. @ {1n.) T 40 0.607 0.531 0.792 0.676 1.001 0.843
’ 0.239) | €0.209) | (€0.312)| (0.266) | (0.394)] (0.332)
kg/al (psf) T AVC 16.20 14,70 21.92 18.70 27.68 23,34
i (3.44) (3.01) (4.49) (3.83) (5.87) (4.78)
5.48 4.42 $..8 4,42 5.48 4,42
Dia. -3 (fr) a7.97) | @asy) | @7.97) | e.s1) | 7.97) | (16.51) |
289.0 204.2 377.2 259.8 476.4 324.3 !
Tank Unic We. (W) ~ kg/m (1b/fc) 9e.2) a2 |esis |ar.e) (. {@17.9)
) - - 2201 2843 3573
i Tank Cone We~kg(lb) (L = 8.92 m (28.28 fr)) (4851.7) (6267.4) (7876.3)
-
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OPTIMUM TANK WEIGHT, 1000 kg
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Figure 171. Weight vs nominal pressure for
integral and nonintegral tanks.
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7.2.4.4 Pressure stabilization study: The objective of the pressure
stabilization study was to investigate the effect of internal tank pressuri-
zation on the buckling strength of typical LHz tanks. Based on the results
of the concept screening analysis, the tankage for the baseline nonintegral
tank design is tension designed; hence, stability is not a critical design
factor. Therefore, only the integral tank design was considered for this
study.

7.2.4.4.1 Approach: A BOSOR4 structural =odel vas established using the
baseline integral tank configuration (Section 7.2.3.3) and the tank wall
data resulting from the concept screening analysis (Section 7.2.3.6). Using
this wodel as the foundation for thisgstudy the following approach was taken,
illustrated in Figure 172.

1. The tank was analyzed for the ultimate load condition, without
internal pressurizacion, to ascertain if the basic design criteria
is met. Point A in Figure 172.

2. The above step was repeated using limit loads, witnout intermal
pressurization, to assess the struc ural margin available in this
design. Point B in Figure 172.

3. The stiffness of the structure was reduced so that the buckling
load exactly equals the limit load. This stiffness reduction was
accomplished by a reduction in the modulus of elasticity, which is
approximately equivalent to a reduction in the thicknesses of the
various shell components. Point C in Figure 172.

4. A constant internal pressure was added to the reduced stiffr.ess
configuration (step 3) until the buckling load equals 1.5 times
the limit loads; i.e., the structure meets the ultimate load
criteria. Curve C-D3 in Figure 172.

S. The damage tolerance criteria was applied to the reduced stiffness

: tank wall configuration of step 4.

6. The amount of weight savings was assessed.

7.2.4.4.2 Model definition: The geometric configuration for the selected
tank ‘the aft tank) is shown in Figure 173. Fore and aft of the tank a short
segment of the Zuselage structure 1is added to the mathematical model to insure
that the boundaries are properly accounted for. The forward end of the rmodel
is assumed to be clamped, the aft erd is free.
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A / ORIGINAL STIFFNESS

REDUCED STIFFNESS
Dy

'.:- l DESIGN POINT (PRESS. STAB)
Pl
= l
z c I
)
= I

05 |— l

; | .
0 PRESSURE

*THE EIGENVALUE BASED ON ULTIMATE LOAD IS ASSUMED TO BE
MULTIPLIED BY 1.5

Figure 172. Analysis sequence - pressure stabilization study
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The loading consicsts of air loads and inertial loads. At stz 2370
(see Figure 173) the total limit moment is 9.3 MN-m (82 x 106 in 1b) = :
the limit shear 95.6 kX (215 000 1lb). At sta 2700 the moment is 3.69 MN-g
(32.7 x 106 in. 1b) and the shear is 51i.5 k% (115 000 1b)}. The structure
is assumed weigntless, except for the ra-%, where the structure and fuel
weigh 18 144 kg (40 000 1b). With a “-20 factor of 2.5 the inertia mass
of the tank is 45 359 kg (100 CJI0 1b) whick was d.stributed axially in
proportion to the diameter of the tank. In addition to this inertia contri-
burion, the pressure head of the tank and fuel! were included in the analysis.

Representative temperatures used on the model components were: 20%¢c
(68°F) for the fuselage, -134°C (-210°F) for the truss structure ar’ -2530C
(-423°F) for the tank.

The structure in general consists of ring- and stringer-stiffened shells.
The tank-to-fuselage interface, however, consists of a tubular truss work.

In the computer model the rings are modelled as discrete elements but the
stringers are smeared; i.e., their various stiffnesses are added tc the skin
stiffness. Thus, buckling may take place between rings, but buckling between
stringers is prevented. The skirts are modelled as an equivalent orthotrcpic
shell, so that in the computer model the individual tubes cannot buckle.

The fuselage consists of a zee-stiffened 0.630 cm (0.036 in.) 0.348 cm2
skin. The zee-ssiffeners are approximately 2.54 cm (1.00 in.) high with an
area of 0.348 cm” (0.054 in.2) and a moment of inerria of 3.288 cm (0.079 in%).
The sheet metal frames are spaced at 50.8 cm (20 in.), and are 10.16 cxr (4 in.)
deep with an area of 4.200 cm? (0.651 in2) and a moment of inertia of 85.3 cm%
(2.05 in%). The skin and stringers are 2024-T3 aluminum, the rings of 7075-T6
aluminun.

The forward and aft interface skirts are made cf tubing arranged to form
a triangular truss. The angle between the tubes is approximately 0.35 rad
(20°). The tubes are made of a boron/epoxy composite with an OD of 5.72 cm
(2.25 in.) and an ID of 3.8] cm (1.50 in.). The modulus of elasticity is
124 GPa (18 x 106 pci). The truss members are hinged to the fuselage and to
the tank, so that differential expansion or contraction of the various struc-—
tures can take place without the inducement of stress.

The conical shell of the tank is made of 2219-T851 aluminvm alloy with
zee-stiffeners. Since BOSOR4 has the capability to handle only rotationally
symmetric structures, the hoop variation of the stringer configuration was
omirted. However, to compensate for the slight 3 to 8 percent deviation of
the neutral axis from the center of the circular cross-section, the applied
loads were adjusted to give the proper stress resultant in the crirical buckling
area. The section properties resuliting from the concept screening analysis
were used for the tank. The properties were supplied at the quarter aud
three-quarter length stations cf the tank, and interpolated linearly between
those points.
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In addition to the scringers, the tann is also stiffened by frames,
each with an area of 2.477 cm? (0.385 in2 j, a moment of ixertia of 23.31 cmé
(0.560 in%), and a depth of 7.62 cm (3 in.). The frames are made of
2219-T851 aluminum. The three domes are of monocoque design and are made

of 2219-T851 aluminum. The closures are both 0.254 cm (0.1 in.) thick, the
divider 0.127 cm (0.05 in.) thick. All three domes have an a/b razic of 1.3
because this analysis was initiated before the dome shape study, section
7.2.4.)1, was completed.

7.2.4.4.3 Resulrs: The lower half of the math model showing the fuselage and
tank is presented in Figure 174. The model is broken down into nine structural
segments, as shown in the figure. The directinns of increasing arch lengths are
indicated by the arrows in the righthand part of the figure. The deformed
shape of the lover portion of the structure under the ultimate load condition,
unpressurized, is shown in Figure 175. The deformations are exaggerated; the
aft dome does not penetrate the aft truss support structure. Note that the
differential lateral displacement of the investigated structure is 6.35 c¢m

(2.5 ir.), and the axial shortening, caused by a combination of the temperature
distribution and the inertia head of the fuel, is 7.11 cm (2.8 in.). The
deformations are also plotted in Figure 176, where U is the meridiomal and

W is the normal displacement.

The circumferential cdisplacement V is zero, since the deformations are
plotted for the lower extreme fiber of the structure which is a symmetry line.
The stress resultants and moments, referred tc the ovter skin surface (not
the neutral axis of the shell) are shown in Figures 177 and 178. N1 and N2
~he meridional and hoop normal stress resultants, X12 is the shear stress
resultant (zero, due to symmetry); M1, M2, and MT are the meridional hoop
and shear moments.

In the BOSOR4 buckling analysis the number of circumferential buckles
vhich gives a minimum buckling load is obtained. Figure 179 shows the buckling
loads (corresponding to points A and B in Figure 172) as a function of the
circumferential wave number. The buckling loads are represented by the
eigenvalue A, so that

Buckling Load = X (Applied Load Set) +4p

Note that the eigenvalue is multiplied by all loads, except the intermal

pressure Ap. Thus, the temperature is also multiplied by . (However, a
subsequent check showed that thz buckling loads are only affected in the

fourth figure by the temperature, which is due to the hinged connections

berween the supporting structure and the tank.)
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There are two minima in the buckling load: one for the fuselage
(A= 1.05 ult.) and one for the tank (A= 1.19 ult.). The axial wave skaoe
for the fuselage is shown in Figure 180 and for the tank in Figure 18]l. We
note that the fuselage buckling load is smaller than the buckling load for the
tank. However, the present study is only concerned with the tank, so a
further investigation of the fuselage is not discussed here.

Based on the results shown in Figure 179, and following the approach
previously outlined, the modulus of elasticity of the skia and stringers in
the tank was reduced by the limit factor 1/1.78, which results in an elgenvalue
of A= 1 for the limit design condition (see Figure 172, Point C). A subse~
quent series of analyses with increasing intermal pressurization, 2o, was run
and is shown in Figure 182. With the pressure added, the number of circum-
ferential buckles changed from 14 to 12, but the axial mode shape remaincd
as in Figure 181.

The addition of the intermal fressure is very effective in restoring the
buckling load capability to the tank wall, with a stiffness reduction of more
than 40 percent (1 - 1/1.78 = 0.438) an internal pressure of only 9.3 kPa
(1.35 psi) 1s required to increase the eigenvalue to the required value of
1.5.

The circumferential veriation in wall thickness is shown in Figures 183
and 184 for the tank quarter and three-quarter lengrh stations. These figures
display the thicknesses used for the ipitial input to the model, the resulting
reduced thicknesses when pressure stabilization is accounted for, and the
thickness requirements dictated by the damage tolerance criteria.

Neglecting the damage tolerance requirements, the results of BOSOR4
bifurcated buckling anziysis indicates a weight savings, corresponding to a
44 percent reduction ia the tank wall thickness, is possible if pressure
stabilization is utilized. However, the magnitude of this weight saving (as
indicated by the increment of thickness between the initial and pressure
stabilized curves on Figures 183 and 184) is too high, since the wall thick-
nesses input into the BOSOR4 model reflect the maximum thickness requirements
at the very localized critical buckling area at the upper fibers of the tank.
Hence, the thickness corresponding to this area has to be used for the entire
circumference due to BOSOR's limitation of analyzing only axisymmetric structure.

Based on the results of the concept screening analysis the cross-
sectional areas dictated by the damage tolerance requirements (see Figure 183
and 184) are also adequate for amy local buckling modes; therefore, little or
no real weight saving is indicated since these thickness values exceed those
predicated on pressure stabilizing the tank.

Based on the depth of analysis of this study no significant welght saving
is indicated when the tank is pressure stabilized. In the example studied,
the damage tolerance requirements are the dominant design factors with stabil-
ity, in most cases, only being a secondary effect. Even if a sizable weight
payofr were possible, other questions would have to be arswered prior to
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incorporating pressure stabilized structure in commercial airframe design.
Some of these are:

e The acceptance of the philosophy of pressure stabilizing structure
by the FAA, airlines, and the airframe wanufacturers themselves.

e The added fail-safe burden of "loss of tank pressure - possible loss
of airplane."

® An assessment of the additional redundancies requirad in tre com-
ponents to accurately monitor the tank pressures.

Accordingly, it was decided that the tank design to be incorporated in
the final LHZ-fueled airplane would not be pressure stabilized.
7.2.4.5 Tank Suspension Study: This study consisted of an analysis of methods
proposed for supporting the nonintegral and the integral tanks.

7.2.4,5.1 Nonintegral Tank: A four point support system was investigated for
the nonintegral tank design. The general attachment scheme is depicted in

Figure 185, sheet 2. All points are capable of supporting the vertical forces
with only the forward points used for reacting the forward/aft inertia forces.

Both circumferential and longitudinal placement of these support points
were studied. For the circumferential placement study, several angular loca-
tions, included the 1.57 rad (90 deg) location (tank side), were investigated
to define their impact on the design of the tank and the insulation system.
The results indicated that the placement of the support at other than the
1.57 rad (90 deg) location could result in lower applied loads on the tank
but the additfonal linkage requires a smzller diameter tank for maintaining
the proper insulation clearance. In addition, the linkage will have a longer
penetration of the insulation system which could provide additional sources
of heat leaks. Based on these considerations the most direct approach was
taken for the design of the support system, i.e., the side location.

The longitudinal lo~ation of the support points was ilnvestigated by
assuming the tank was a simple beam with overhangs at both ends. The applied
vertical loads reflected a full tank with a 4.5 g load factor. Figure 186
presents the beam nomenclature and the magnitude and type of loads. Using
this model, the locatien of the beam reaction points was varied until equiva-
lent membrane forces were obtained at the maximum moment location of each
beam segment. The resultant locations for the support points were approxi-
mately 1.143 m (45.0 in.) aft of the equator of the equaror of the forward
dome and 1.905 m (75.0 in.) forward of the equator of the aft dome.

A sketch of the compoments included inm the design of the support system
for the nonintegral tank design is shown in Figure 187, sheet 2, view D~D.
These components were subjected to a preliminary structural sizing in order to
define the material distribution for estimating the weight of the support
system. In general, the critical design condition was the emergency landing

384




i

———

‘weoj Jeulaixa - Ruel Terdajuyuou ‘y ajwpypue)d - °¢gi indyy

AVN1INYIS ¥NVL
NOILVINSNI TYNUIIX3 /

YNLONYLS

0VIISnd Ldv /

\

// _ ANIWIMYINOD YION ISV

. |
I/._

] HOO14 YI4an \l

¥3IO'AIQ ANVL
) AVIHB Q1N
NI “LHIA 30v138N3

385



~B

*papnIouUL) - °*GRT 9an814

1H0dINS YOI R I &‘
Q°$430 - 9 ILYARANYI 338 a;

/\3532

3OV

NOILIVHING) G102
NNV MOV OL UVH
IVAQWIN 20 ¥Y31D
830YIUUVYD ONV INVL
1311 SdWVH 1H04dNS

IAOWIY

WNVL 14V
NOMOIUIO® ~
SINIVMASNOD N
’ /
/ PRI
M \/sﬁxn
-a3q- JOviINd
4 2 3LVOIQNVD 335)
\ 12) SIDVIUNYI XNV
Nt

{QIXN1$) UV H TVAONIY

V'V HOILJ3S

SW3I1SAS '371vi30 338

ONILOOY \ 9 ILVAIONYD

1433N02

IVAQNIN JINVL BOJ
2 3LVQIGNYD
H'13Q 338

06l 3UNDIE 335

J 3LVAIONYD
a°)3q 33$

386



T T | — e - . I P PTer— ¥ T )

W = 81648 kg

W, = 105.3 kg/em {40000 x 4.5 = 180 000 Ib)
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Figure 186, - Beam model for longirudinal placement
study, nonintegral tank.
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condition. Section 7.2.1.6 dofines the ultimate inertia load factors for this
condition.

With reference to Figure 187, primary and secondary pins are provided lor
fail-safe purposes with bearings defined at the rank wall and exterlor attach-
ment point. The pin assembly is screwed into the internal threaded portion
of the support cone. The structure adjacent to both the tank and fuselage
support points is reinforced to provide for theredistribution of the concen-
trated forces. Lateral loads imposed by the tank would be resisted by suit~
able structure at the fuselage sunport points. The design shown in Figure 187,
view J-J, uses self-gligning thrust bearings to transmit the loads to the
fuselage.

7.2.4.5.2 Integral Tank: A tubular truss design was investigated for tle
structural connection to the fuselage at both ends of the integral tank
design. A schematic drawing showing the location and design of this support
system is presented in Figure 187.

Tapered tubular Boron/epoxy struts with titanium end fittings (see Sheetr 2
of above figure) were selected for the design of the truss structure. Each
strut is bolted to the adjacent tank and fuselage structure to allow some
relative displacement between the structural components. This helps to alle-
viate the thermal stresses induced in the strut and tank skirt caused by the
contraction of the crvogenic tank. In addition, foamed-in-place insulation is
provided over part of the length of the strut to reduce the thermal leakage
from the tank, as well as to protect the adjacent structure from the cryogenic
temperatures.

The Boron/epoxy diagonal elements of the truss were analyzed for the
maximum loads imposed during flight. A maximum element load of 182.4 kN
(41 000 1b) and 62.3 kN (14 000 1b) (ultimate) was defined for the forward
and afr truss structure, respectively, for the 'PLA' flight condition. Euler
buckling and basic material strength (tension and compression) were considered
in the selection of the cross-secrtional dimensions and ply orientation. 1In
addition, a minimum value of extemnsional stiffness, equivalent to the stiffness
cf the adjacent aluminum fuselage structure was imposed on the design of the
truss elements.

Using these analytical procedures and criteria, th: cross-sectional
dimensions and material ply orientation of the truss elements were established.
An average rubular cross section of (5.72 cm (2.25 in.) 0.D. X 3.81 cm (1.50 in.)
I.D.) was defined for the elements of the forward truss structure. Correspond-
ingly, a (5.08 ¢m (2.00 in.) 0.D. X 3.81 em (1.50 in.) I.D.) cross-section was
indicated for the elements of th2 aft truss structure. A Boron/epoxy strut
composed of 70% 0° plies, 20% 0.785 rad ( 45°) plies and 10% 1.57 rad (90°)
plies satisfies the strength and stiffness requirements of both the forward and
aft truss structure.

Transicion'panels are provided at the forward and aft ends of the tank,
as shown in Figure 187 (sheet 2), to cover the truss structure and maintain
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aerodynamics smoothness. These panels are removable to allow access to the
internal truss structure. A Kevlar faced sandwich with Nomex core was
premised for the design of these panels. Basic strength and buckling of

these panels were investigared for an external pressure condirion of

5.17 kPa (0.75 psi). The results of this evaluation defined a forward
transition panel with 0.762 mm (0.030 in.) Kevlar face sheets and a 25.4 mm
(1.00 1in.) core thickness. The corresponding design data for the aft tran-
sition panel is 0.508 mm (0.020 in.) face sheets with 19.05 mn (0.75 in.) core
thickness.

7.3 Evaluation of Preferred FC5 Candidates

Evaluation of the four preferred fuel containment systems to determine
which is best for application in a commercial transport ailrcrafr was based
on comparison of performance and cost characteristics of aircraft designed
specifically to use each of the candidate systems. In addition, the evalua-
tion was influenced by judgment concerming aspects such as safety, produc-
ibility, maintainability, reliability, etc.

Each of the cand!date fuel containment systems (FCS) was incorporated
into an aircraft design which was then subjected to th2 sizing routine using
the ASSET computer program. The result was definition of four aireraft, one
for each candidare FCS, each of which was optimized to perform the design
mission at the lowest direct operating cost while still meeting all design
and operational constraints such as the following:

& Maximum engine-out takeoff field length of 2438 m (80G0 ft)
e Minimum initial cruise altitude of 9449 m (31 000 ft)
e Maximum approach speed of €9.4 m/s (135 kc) EAS at end of mission.

All of the aircraft designs incorporated the results of the studies and
investigations reported previously herein, relative to the LH-fueled engine
and fuel system elements. Thus, the aircraft used to evaluate the four pre-
ferred fuel containment systems represent complete, final designs (in a
parametric sense and within the usual limitations of time and budget) of
LHz-fueled vehicles.

7.3.1 Weight considerations. - Evaluation of the weight of each of the candi-
date FCS was a critical aspect in the process of selecting a preferred design.
1t may be seen from Figures 190, 191, 192, and 193, scale drawings of typical
cross sections of each of the candidates representing the top of the aft tank
at the quarter length point, that there was a wide variation in the designs
which were to be considered. Figures 185, 187, 188, and 189 show installation
arrangements for each system.
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SEE DETAILE |
CANDIDATE C

SECTION A-A

Figure 18%. - Concluded
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Because of the significance of inert weight as a multiplying factor on
the gross weight and cost of transport aireraft, great care was taken :o
assure that consistent calculation methods were used for all cardidates so
that the weight comparisons would be as representative as possible.

A comparison of the weights of the four preferred candidate fuel contain-
ment systems is presented in Table 73. The basic design of all structural
components, such as tank, suspension system, body shell, vzcuum jacket,
truss and fairing, was derived from stress analyses as explained in Section 7.2.
An allowance of eight percent was added to the calculared structural welght
to provide for manufacturing tolerances, joints, weld lands, margins of safety,
access, and systems provisions. A similar allowance was applied t. the insula-
tion weight for all candidates to provide for manufacturing *olerance, density
variations, access and svstems provisions.

Detailed stress analysis was performed for the aft tanks with only rap-
dom analysis on the forward tanks tc support the weight estimates. It was
fourd that, where tank pressures were the same, the following equations could
be used to predict the forward tank weight:

A 3

D
“pome, ~ “poMe (D—l )
1 2 \P2

D 2 L
e ey (_1) (_1)
CYLl CYLZ DZ LZ

where subscripts 1 and 2 refer to the forward and aft tanks, respectively,
for the same candidate.

Candidate fuel containment systems C and D require nitrogen purge of the
open cell foam just under the fairing cover. The total purge system require-
ment of 95 kg (210 pounds) is divided equally between the forward and aft
tanks. Accordingly, the insulation system weights shown in Table 78 include
95 kg (210 pounds) for nitrogen purge systems for those systems. The nitrogen
is assumed to be stored in 1liquid form in an insulated tank.

Similarly, vacuum pumping systems are required for Candidates B and D.
The system required for Candidate B weighs 136 kg (300 pourds) per tank. It
consists of a combination of Roots blowers, fore~pumps and turbomolecular
pumps. For Candidate D the pumping system consists of just two Roots blovers
in series and the weight is 91 kg (200 pounds) per tank.

To assure a fair comparison between intagral and nonintegral candidates,
the body shell weight has been included. In the case of the forward tanks,
the body shell length is measured from the tank forward end to the forward

402



TABLE 78. SYSTEM WEIGHT COMPARISON OF FUEL CONTAINMENT SYSTEM CANDIDATES
(S1 Units, kg)

Candidate No,

Item A B C D

Fuel Containment System:<a) 10 595 13 416 9 359 9 647

e Tank and Body Shell: (9 099) (32 714) (7 422) (7 328)
Dome Ends - Fwd 503 564 552 564
Dome Ends - Aft 377 423 419 433
Divider Bulkhead 313 321 332 337
Cylinder 3 445 5 410 3 B&2 3 716
Suspersion System

and Removal Rail 665 665 - -
Truss-Tank to Body

Shell - - 837 845
Body Shell 3 79 4 314 1 439 1 433
Vacuum Jacket Dome

Ends - 1017 - -

e Insulation: (1 496) (702) (1 937) (2 319)
Aero., Fairing - - 325 313
Vapor Barrier and

Adhesive ' 456 235 316 92
Open Cell Foam - - 246 239
Closed Cell Foam 1 040 195 954 -
Microspheres - - - 982
N2 Purge System - - 95 95
Vacuum Pump System - 272 - 181
Vacuum Jacket included 417

above

Fuel Systems: 1 046 1 055 1 026 1 019
Engine Supply 412 41S 403 400
Fueling/Defuel 320 323 314 312
Pressurization/Vent 314 317 308 307

Total System Weight 11 641 14 471 10 384 10 666

Total Fuel Wt. 27 887 28 281 27 302 27 134

Frac. of Total Fuel Wt.

Tw
e 0.4174 0.5117 0.3803 0.3931
FUEL

(a) Sum of forward and aft tanks
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TABLE 78. - Concluded. (U.S. Customary Units, 1b)

Candidate No.
Item A B c D

Fuel Containment System: ) | 23 357 29 577 20 632 21 269

e Tank and Body Shell: (20 059) (28 030) (16 362) (16 156)
Dome Ends - Fwd 1 110 1 244 1 216 1 243
Dome Ends - Aft 832 932 924 955
Divider Bulkhead 690 707 732 744
Cylinder 7 596 11 927 8 471 3 192
Suspension System

and Removal Rail 1 466 1 466 - -
Truss~Tank to Body

Shell - - 1 846 1 862
Body Shell 8 365 9 511 3173 3 160
Vacuum Jacket Dome

Ends - 2 243 - -

o Insulatien: (3 298) (1 547) (4 270) (5 113)
Aero. Fairing - - 717 691
Vapor Barrier and

Adhesive 1 006 517 697 203
Open Cell Foam - - 542 526
Closed Cell Foam 2 292 430 2 104 -
Microspheres - - - 2 164
No Purge System - - 210 210
Vacuur Pump System - 600 - 400
Vacuum Jacket included 919

above

Fuel Systems: 2 307 2 2325 2 261 2 246
Engine Supply 909 915 888 882
Fueling/Defuel 706 712 693 688
Pressurization/Vent 692 698 680 676

Total System Weight 25 €64 31 902 22 893 23 515

Total Fuel Wt. 61 480 62 350 60 190 59 820

Frac. of Total Fuel Wt.

Zu
o 0.4174 0.5117 0.3803 0.3931
FUEL

(a) Sum of forward and aft tanks
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cabin pressure bulkhead frame. For the aft tanks, body shell length Is
measured from the aft cabin precsure bulikhead frame to the aft end of

the tank. Body shell weight is greater for the nonintegral Candidates A

and B since the entire tank is enclosed withim the body. For Candidates

C and D, part of the body shell 1is integrazl with and included in the tank
cylinder weight. The remaining body shell weight is for that portion cover-
ing the dome ends and the area between tank end and cabin pressure pulkhead.

7.3.2 Cost considerations. - Cost estimates were prepared for each of the
candidate fuel containment systems, as well as for the basic fuel system
components required for engine supply, freling/defuel, and vent/pressurization
systems. The data developed during this study were parametric cost factors

to represent each design or candidate system in terms of productrion labor
hours and material dollars_per pound of total fuel system weight. The data
were for use in the production cost subroutine of the Lockkzaed prorrietary
computer models, ASSET.

The production cost subroutine of ASSET comtains individual cost factors
for each type of materisl (up to five) which might be used In any of the
individvual structural mass groups (i.e., wing, tail, body, landing gear,
nacelles, surface controls, and air induction 2nd exhaust systems.) Labor
and material cost factors are also included for the airframe amd propulsion
systems (ircluding the fuel system) and avionics and engine installarions.

In addition, the subroutine includes provisions for learning curves, sicing
factors, quality assurance, other recurring manufacturing support activities,
warranty, and profit. The engine cests are estimated using modified Rand
formulas and the avionics equipment are based on equipment requirements.
These latrer costs are estimated separately 2nd added to that of the airframe
to arrive ar the total recurring cost. Production costs are used in the
calculation of investment cost, DOC, IOC, and ROI.

7.3.2.1 Premises and assumptions: The basic premises and assumptions used
in the cost study were as follows:

s These are engineering cost estimates for relative ranking of alternate
configurations. Price quotes are neither implied or intended

e Costs are stated in constant 1976 dollars
e Costs include production (factory) labor and material only

e Estimated costs represent the cumulative average cost per aircraft
based on a program quantity of 350 aircraft

e An 80-percent learning curve was used for labor
e A 95-percent learning curve was used for material

e Prime contractor profit is not included
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7.3.2.2 Cost methodology: The first step in the cost analysis task was to
define each system to the level required for estimating purposes, consistert
with overall program requirements. A summary of the general characteristics,
structural concepts, materials, and manufacturing methods for major items
weighed individually was prepared in matrix form. Basic parametric cost
factors in terms of production la%or hours and material dollars per pound of
weight were selected for conventional metal skin/stringer/frame construction,
as well as for composite laminated, sandwich, and hybrid structures. These
basic data were suitably modified to account for individual design concepts
for each applicable major item. Cost facters previously developed for wide
body transports for fabrication, assembly, and installation of plumbing;

and for checkout of valves, pumps. 2u: various other components of the

2ngine supply, fueling/defuel, and vent/pressurization systems were appro-
priately used. Cost of pumps required for the vacuum pumping systems wo-e
estimated by LMSC. The estimated cost of microsphares in production quanti-
ties $4.41/kg ($2.00 per 1b) was supplied informally by the 3M Corporation.

The basic cost factors in the form of labtor hours and material dollars
per pound were prepared so as Lo represent the cumulative average for 100
aircraft. The appropriate cost factors were applied to each item individually
weighed, and all labor hours and material dcllars were summed. Appropriate
learning curves were applied, as well as labor rates, to arrive at the total
cumulative average cost for 350 aircrafe.

It should be noted that derivation of these cost facrors required a cer-
tairn amount of judgment and extrapolation of available data. Therefore, these
estimates shouid not be construed as absolute values; however, the relative
ranking of each system should be fairly consistent and representative within
the framework of this study.

7.3.3 Evaluation results. - A matrix of computer runs was made with the ASSET
program to determine the optimum wing loading and thrust-to-weight ratic for
LHp-fueled aircraft using each of the candidate fue) containment systems. As
stated earlier, minimum DOC was the measure of merit but each aircraft was
required to meet cerrain operational constraints while performing the design
mission.

The results are shown in Table 79. The parameters listed are those
considered particularly relevant to the ocbjective of selecting a preferred
FCS. On che basis of gross weight, fuel weight, OEW, fuselage length, engine
size, aircraft price, DOC, and energy utilization, candidate D, the integral

.1k design with microsphere insulation would be considered the best choice.
ididate C ~e integral tank design with closed cell foam insulation, would

be = #*.- -_...nd. The nonintegral tank designs are severely penalized by their
gL et T ‘e . zss and weight. A summary of the weight of individual elements

cf th =% 'ucture and insulation systems of the resveccive aireraft, plus
<he w . . :heir engine fuel supply systems, fueling/defuel systems, and
pressu: ..~ n/vent systems, was shown in Table 78.
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As obvious as it may seem from cons.deration of these quantitative values
of aircraft parameters that the inregral tank candidates are the superior choice,
there are other considerations which need to be taken into account. These include
such items as safetry, preducibility, maintainability, reliability, and operational
considerations which are measures of the practicability of a design. These factors
are subjective in nature and therefore are not amenable to being quantified.
Accordingly, an evaluation scheme was established wherein each of these indicators
of practicability could be considered on a relative basis.

An evaluation scale ranging from 1 to 10 was used, with 10 being best.
To encourage a wide spread between the candidates in the final total, the
system which was preferred for each parameter being evaluated was awarded
the maximum rating of 10. It was not necessary that the lowest rated system
be given a 1, this was a matter of judgment concerming the significance of
the difference between the best and the worst systems.

The fuel containment svstems were evaluated for their relative practica~
bility on the basis of considerations which were discussed throughout Section 7
and in Appendix E and F. The results are presented in Table 80. Candidates C
and D are again the preferred designs with the difference between them being
too small to be meaningful. The nonintegral designs were considered deficient,
particularly in their capability for being repaired and replaced.

Accovrdingly, on the basis of the small advantage shown in direct operating
cest and energy utilization, Candidate D, the integral tank wizh the microsphere
insulation system, is designated the preferred fuel containment system., How-
ever, it is emphasized that further development of both Candidate C and
Candidate D is strongly recommended. It would be a serious mistake if future
developmznt of LHy-fueled aircraft was tied exclusively to only one FCS con-
cept vwhen ' there is so little experimental data on either the foam or the
microsphere system in connection with LH3, b) the evaluation procedure involved
so much subjective judgment and resulted in so little difference between the
first and second choices, and c¢) the fuel containment system is such an
important element in the design of a satisfactory aircraft.

The fundamental risk involved with Candidate C, an integral tank with
closed cell foam applied on the external surfaces, pertains to the useful life
which might be realizable with the foam and its vapor barrier. With Candidate D,
it is a question of the degree of difficulty which will be encountered in fabri-
cation and maintenance of the flexible stainless steel vacuum jacket, and
quescions of safety concerning the effect of a major fracture or penmetration of
the vacuum jacket during service. These questions can only be resolved by
further development of both concepts.
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TABLE 80. - EVALUATION OF PRACTICABILITY OF PREFERRED FCS CANDIDATES
(Scale of 1 to 10, 10 being best)

Candidate

A B C D

Safety 6 8 6 10

Producibilicy 8 2 0 9
Maintenance

Inspection 10 7 10

Repair 3 1 10 7

Replacement 1 10 7

Reliabiliry 10 3 10 7

Operations 8 8 8 10

l Total 45 33 61 60
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8. LH,-FUELED ATRCRAFT CHARACTERISTICS

The results of all the analyses and studies described in foregoing
sections were put together invo the design of a final liquid hydrogen fueled
aireraft which conforms to all the guidelines and meets all the requirements
estatlished at the beginning of the program.

In this section, the airplane and its operational characteristics are
described; and the implications of its fuel system with regard to malfunctions,
reliability, safety and fire protection, and FAR and industry stancards are
discussed.

It is important to note that before the final characteristics of the LHy-
fueled aircraft were generated, the Lockheed Airecraft Systems Synthesis Evalua-
tion Technique (ASSET) computer program was revised to incorporate updated
informatior in the aerodynamic, propulsiom, weight, and cost subroutines.

The changes were relatively minor except for modifications in the aerodynamic
and propulsion programs which are worthy of note because they caused signifi-
cant differenc:s in the values of parameters previously listed herein.

The aerodynamic subroutine was modified to reflect use of more advanced
supercritical wing technology. This led to increased L/D of the aircraft
and a reduction in the fuel required for the mission. The propulsion sub-
routine was changed to use sea level static, uninstalled characteristics
of the engine (rather than installed) as a basis for reference to re‘lect
engine marufacturer practice in specifying engine size. This change resulted
in higher apparent values of T/W for the aircraft even where there was no
physical difference in the size of the engine relative to the aircraft gross
weight.

These changes are significant in accounting for the differences between
the aircraft parsmeters listed in Table 79 and those presented in Tables 81
and 87 for the final designs of the LHz-fueled and the Jet A-fueled aircrafe.

8.1 LH2 Aircraft Description

The final airplane design is the one described in Section 7 whi~h uses
fuel containment system D, the integral tank design with microsphere insula-
tion system. It also incorporates the LH3-fueled turbofan engine discussed
in Section 4.3.3; the design of engine fuel supply system with its boost
pumps, feed lines, engine pump, and fuel control system as selected in
Section 5; and the fuel subsystems defined in Section 6.

Significant characteristics of the aircraft are listed in Table 81.
Its general description is fundamentally the same as that of the baseline
aircraft from Reference 1. The general arrangement shown in Figure 2
(Section 3) is an accurate representation of the configuration; however,
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TABLE 81. CHARACTERISTICS OF FINAL DESIGN, LH,~FUELED_TRANSPORT AIRCRAFT
(400 PAX; 10 190 km (5500 n.mi.); MACH 0.85]

SY Units U.S. Units

Gross Wt. kg 168 829 | 1b 372 200
Total Fuel Wt. kg 25 608 | 1b 56 460
Block Fuel Wt. kg 21 621 1b 47 670
Operating Empty Weight kg 103 305 | 1b 227 750
Aspect Ratio 5 - 9
Wing Area w 296.8 fc? 3195
Sweep rad 0.524 deg 30
Span m 51.7 fr 169.6
Fuselage Length m 65.7 fe 215.6
L/D Cruise - 17.4 - 17.4
SFC Cruise (kg/hr)/daN | 0.206 |12/1vf c.202
Initial Cruise Alt. m 11 580 fx , 38 000
Wing Loading (takeorf) kg/m? 568.8 1b/fe2 116.5
Thrust/Weight N/ kg 3.20 - 0.326
No. Engines - 4 - 4
Thrust per Engine N 135 000 1bf 30 350
FAR Takeoff Dist. m 2 440 fr 8 000
FAR Larding Dist. m 1 768 fe 5 800
2nd Seg Climb Grad

(Eng. Out) - 0.0300 - 0.0300
Approach Speed m/s 71.2 KEAS 138.4
Weight Fractions

Fuel - 15.17 - 15.17

Payload - 23.64 - 23.64

Structure - 32.39 - 32.39

Propulsion {includes

tanks & fuel
systems) - 9.07 - 9.07

Price 106 43.39 | 5106 43.39

poc (&) ¢/Skn 0.869 | ¢/S n.mi. 1.609

Energy Utilfzation kJ/Skam 636 | Bru/S n.mi. 1118

(2) DOC based on L, cost = $5.69 per GJ ($6/19% Btu = 31¢/1b)
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the overall dimensiors are different. As listed in Table 81, the wing span

is now 51.7 m (169.6 ft) and the body length is €5.7 m (215.6 ft). Intewnzlly,

the 400 passengers are located in the central portiom of the fuselage in a

double-deck arrangement with the fuel tanks located forward and aft. The .
fuselage is basically circular in cross-secticn with a lower lobe attached

which contains cargo and baggage.

The wing has a supercritical section and incorporates high 1ift devices
including 15 percent leading edge slats and 35 percent double-slotted Fowler
fiaps ocut to the ocutboard engines. Conventional ailerons are attached to the
outboard wing panel. Spoilers are provided for direct 1lifr control in flight
and for deceleration during landing ground run. Active controls are employed
to minimize gust loading, provide a smoother ride and minimize tail size.

The wing and body structure incorporates nearly 50 percent by weight of
advanced composite materials.

The differences in performance and weight of the present design, relzative
to the Reference 1 aircraft, are due to small changes in specific fuel con-
cumption in various engine settings and flight cenditioms resulting from the
work reported herein to define a more realistic 1¥;~fueled engine, and to
changes in weight of various componernrs of the LHZ fuel system and the engine.

The engine used in the previous study (Reference 1) was flat rated to -
provide the same takeoff thrust under hot day (32.6°9C) conditions as at stan-
dard day conditions. The engine was sized by the requirement to provide an
aircraft thrust-to-weight ratio (T/W) that would meet the initial cruise
alticude specification of 9449 m (31 000 ft).

The engine from the present study is not flat rated. 1In addition, it
hias a lower thrust lapse with altitude than did the original engine. For
example; at 10 668 m (35 000 £r) Mach 0.85, the original engine produced
21.3 percent of its hot day, sea level static thrust while the present engine
produces 28.7 percent, or in other words, 34.7 percent more thrust at altitude,
The net effect of this is that while the veference aircraft required a 0.293
(installed) sea level static thrust-to-weight ratio to meet the minimum cruise
altitude, the present engine can meet this with ease at a lower T/W. As a
result, the engine—out takeoff field length requirement became critical in
the present study in determining the thrusi-to-weight ratio of 0.326 uninstalled
(equivalent to 0.255 installed) which was selecred as optimum for the final
aircraft design.

8.2 Weight Estimating Relationships

Weight estimating relationships normally used for conventional subsonic
passenger transport aircraft were employed in the present study, except as
it was found necessary to modify them to account for features associated

with use of LH2 fuel. The changes included the following:
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Body — The body weight estimating equation was modified to account
for the large volume required for the low density LHy which is
equally distributed in tanks forward and aft of the passenger cabin.
This distribution causes greater shear and bending loads in the

body shell than for a conventicnal passenger transport which carries
its Jet A fuel in the wing dox. Although the wing equation was not
modified for this study, the absence of fuel in the wing for bending
relief would cause the wing specific weight to be somewhat heavier
for an LH, design than for a conventional Jet-fueled aircraft.

Fuel Tanks — The weight of the fuel containment svstem was calculated
as described in Secrion 7.3.1. For the subject, f'nal design aircrafe,
the weight of the integral tank design with microspheres contained in
a soft vacuum annulus for insvlation was represented.

Engine Fuel Supply System — The engine fuel supply system weight was
based on use of 2.54 cm diameter x 0.406 mm thick (1.0 in. dia. x

0.16 in. thick) stainless steel lines wrapped with 3.81 em (1.5 in.)
of closed cell foam. A 10.16 cm diameter x 0.~06 mm thick (4.0 in.
dia. x 0.016 in. thick) aluminum tube enclosed the foam Iinsulation

to provide a vapor seal and mechanical protection. The weight of

the engine fuel supply system including boost pumps, lines, and valves
was calculated as outlined in Section 5.6. Similarly, the aircraft
fuel subsystems weights were taken from Section 6. Table 82 is a
summary of the weight of the LH, fuel system.

Propulsion — The LH2 fueled turbofan engine weight was scaled from
the baseline engine described in Section 4.3 which weighs 2082 kg
(4589 pounds) and delivers 136.6 kN (30 706 1b) of thrust at sea
level static, standard day conditiens.

The engine weight includes

o Engine accessories and gearbox

o Engine mounts and pylon splitter fairing

o Gas generator cowl and tailpipe

¢ Fan duct acoustic ring

Installed engine weight per aircraft is expressed in pounds as:

WENG = (0.17839) (NENG) (TSLS)
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TABLE 82. LH, FUEL SYSTEM WEIGHT SUMMARY

2
kg {1bm)
Engine Supply System 420.9 (928)
Flumbhing -~ Tank to Engine
Tarnk 1 68.9 (152)
Tank 2 54.4 (120)
Tank 3 77,6 171}
Tank & 91.6 (202)
Valves 26.8 (59)
Boost Pumps (3/Tank) and Housing (1/Tank) 53.1 117>
Electrical System for Pumps and Valves 48.5 (107)
Refuel/Defuel System ’ 328.0 (723)
Transfer Lines to Defuel Manifold 37.2 (82)
Refuel Lines Inside Tank 28.6 (63)
Refuel/Defuel Manifold 239.5 (528)
"alves and Fueling Adapter 22.7 (50)
Vent/Pressurization System 321.6 (709)
Vent Lines and Fititings 235.4 (519)
Valves 20.4 (45)
Adapter, NACA Scoecp, Vent Extension 8.6 19)
Alternate Pressurization System 57.2 (126)
Lines 49.0 (108)
Heat Exchanger 3.6 (8)
Regulator Installation 4.5 (10)
Total LHp Fuel System Weight 1070.5  (2360)

NOTE: Fuel system instruments (fuel quantity, flowmeters,
pressure gages, GH; sensors, etc,) are estimated to
weigh 187 pounds, and are included in "instruments"
on the ASSET weight statement.
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where

NEXG = Total number of engines

TSLS = Installed sea level static thrust/engine

Nacelle and pvlon weight per aircrafr, before applying a weight
reduction factor for advanced composite usage,
percent of the total installed engine weight.

the air inlets are 16.12 percent of the engine weight.

is equal to 31.66
On the same basis,

The remain-

ing propulsion group items, including fan thrust reversers, engine
controls, and starting and oil svstems weigh appro.-imately 1C percent

of the installed engine weight.

e Advanced Composites — Weight reduction factors were applied to the
estimating equaticns to reflect the benefits expected from advanced
composites usage in the 1990-1995 time period.

tion factors were taken from the Advanced Technology Transport

These weight reduc-

Studvy (Reference 38), performed by the Lockheed - Georgia Company,
and are based on the intermediate techuology level discussed therein.
Table 83 lists the weight reductior factors as well as the estimated

materials distribution for each group.

TABLE 83. - ADVANCED TECHNOLOGY WEIGHT REDUCTION FACTORS -

AND ESTIMATED MATERIALS DISTRIBUTION -
Weight Materials Distribution (% of Total Wr.)

Reduction
Group Factors Alum. Ti. Steel Compos. Other
Wing 0.635 44 4 2 48 2
Tail 0.730 49 15 2 32 2
Body 0.664 38 4 2 50 6
Landing Gear 0.848 8 15 20 20 37
Nacelles, pvlon 0.787 5 30 30 35 0
Air Ind. 0.787 45 5 4 41 5
Flight Controls 0.950 20 5 20 5 50
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8.3 Operational Requirements of LH_ Fuel Sysrem

2

A detailed accounting of all of the flight and maintemance crew operational
requirements for the airplame is beyond the scope of this program; however,
some of the requirements which can be addressed in this conceptual phase of
the airplane design are discussed in the following paragraphs.

8.3.1 Fueling and defueling - Because it is cryogenic and is also very
easily ignited, hydrogen must be handled in a different manmer than hydro-
carbon fuel during fueling operationms.

8.3.1.1 Recommended practices for fueling procedure:

1. Operating personnel should be suitably attired in protective apparel
including thermally insulated gauntlet type gloves, head and body
splash protective clothing, and nonconductive footwear.

2. Bond the airplane and ground fueling equipment to each other and to
a permanently installed airport grounding terminal. (It is assumed
that all parts of the airframe are bonded together electrostatically
so that no unbonded components car cause a static discharge in the
presence of a combustible mixture of hydrogen and air.)

3. Determine the total quantity of fuel required to accomplish the
intended flight including normal reserve.

4. Set the "bug'" on the fuel quantity indicator for each tank on the
refuel panel (see Figure 194) at the fuel load required.

5. Insert the vapor recovery nozzle into the vapor recovery adaptor
making sure that no contaminants are on the mating surfaces at the
interfaces of the nozzle and adaptor.

6. Insert the fueling nozzle into the fueling adaptor taking the same
precautions as in (5).

7. Place the actuating linkage for the vapor recovery nozzle in the
open position.

8. Place the refueling valve switches on the fueling panel in the open
position.

9. Initiate fueling by placimg the actuating linkage of the fueling
nozzle in the open position. (The fueling time for a full load of
fuel starting from a 15 percent reserve quantity remaining from a
previous flight should be approximately 20 minutes).

10. Close the actuating linkage of the fueling nozzle.

11. Piace the refueling valve switches in the refuel panel in the closed
position.
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SET POINT TEST — ON WITH
POWER — OFF WHEN POINTER
AND BUG MATCH

FUEL QUANTITY INDICATOR
— POINTER AND DIGITAL
. EADOUT

DEFUEL VALVE INDICATOR
— LIGHT ON WHEN VALVE
NOT IN SELECTED POSITION

VALVE CLOSED INDICATOR

REFUEL VALVE SWITCH (4)

.

SET KNOB-POSITIONS BUG

ADAPTORS — DUST COVER
AND SECONDARY SEAL —
REFUEL DOOR CANNOT BE
CLOSED UNLESS COVERS
ARE IN PLACE

SET 6UG-INDICATES QUANTITY AS SET
BY KNOB. FUEL FILOW STOPS WHEN
POINTER MATCHES BUG

Figure 194. - Refuel parnel.
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12. Remove thke fueling nozzle.

13. Remove the dust cover.

14. Close the actuating linkage of the vapor recovery nozzle.
15. Remove the vapor recovery nozzle.

15. Replace the dust cover.

8.3.1.2 Defueling procedure: Defueling is not a normal cperation s’ace it
usually results from the need for maintenance zctivities. This usually in-
volves emptying the tanks completely which is a specialized activity requizing
special procedures to ensure that no impurities get into the tanks while the
tanks are beingz:

l. emptied,

2. warmed to ambient temperature,

3. purged of hydrogen gas,

4. purged of air after maintenance activities are complete,
5. cooled to cryogenic temperatures, and

6. refueled.

These specialized procedures are discussed in some detail in Section 4.5.5 of
Reference 2 and will not be discussed herein.

8.3.2 Flight eagineer's pamel. - Figure 195 shows the flight engineer's panel
arranged in a functional manner to permit visualization of the essential -ea-

tures of the system. The diagram is self explanatory with the exception of
the "press-relief" and "vent" push-to-test buttons. When depressed, these
close tke primary tank and vent line (back pressure) valves respectively.
Continued depression will allow the tank (or vent line) pressure to rise to
the higher setting of the secondary valves at which time the pressures shc.ld
stabilize at the higher pressure. In this manner, it can be determired that
both primary and secondary tank pressure and vent line valves are functional.

Fuel quantity gauges are backed by fuel totalizers which indicate the
total quantity of fuel used by each engine by means of integration of the
engine mounted fuel flowmeter.

The optional fuel jettison valves are also shown. To jettison fuel, all

12 pumps should be turned on, the jettison chute or boom extended and he
Jjettison valve opened.
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Figure 195, —- Fuel system control panel - flight engineer.
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8.3.3 Fuel management. - Installation of fuel tanks at the forward and aft
locations in the fuselage provides obvicus advantages in control of aircraft
center -of-gravicy. In normal operation, aircraft balance is maintained by
having equal tank capacities with approximately equal moment arms for the
forward and aft tanks. To illustrate this point, Figure 196 was prepared to
show c.g. travel based on a typical weight and balance sheet. At gross take-
off weight, the aircraft c.g. is at 41.5 percent MAC, well within the limits
of 30 to 47 percent MAC at that weight. For normal fuel usage, the c.g.
moves forward to 36.8 percent MAC at zero fuel weight creating a minimum
requirement for aircraft trim adjustment.

However, a failure of the fuel line tank isolation valve in any one tank
to the closed position could make fuel trapped in thar tank unavailable for
engine consumption if an alternate path for fucl to be removed from the tank
were not provided. The consequences of such a condition, illustrated on the
figure for fuel trapped in either Tamk 1 or Tank 4, are not tolerable.

To preclude this possibility, che fuel transfer system described in
Section 6.5 and illustrated in Figure 80 was incorporated in the fuel systenm
design. An example of the effectiveness of the system can be illustrated by
the following example. If the fuel valve in Tank Nc. 1 fails in the closed
position the corrective action is to open the fuel transfer valve in Tank 1
and close its refuel control valve (see Fig. 80). Fuel immediately begins
to flow fror Tank 1 to Tank 2 through the Tank 2 fueling manifold. This does
entail some nominal shift in c.g., but the amount is less than two percent
as can be seen in Figure 196. In the other ex-reme situation, where the
fzed lire from Tank 4 is blocked, requiring transfer to Tank 3, the forward
c.-g. shift is still less than two percent and cntails an aircraft trim
adjustment nc greater than encountered in normal operation.

8.3.4 Maintenance. - The cryogenic nature of hydrogen fuel will require
major changes in the methods used to maintain and repair the airecraft fuel
system. These changes are exemplified in the way fuel tank pumps are re-
placed and in the preparation for repair of fuel system insulation leaks.

A major objective of the design study was to locate all equipment pos—
sible external to the fuel tanks so that the time consuming process of
entering the tanks for fuel system maintenance could be avoided. This has
been accomplished and only the necessary plumbing lines are located in the
tank.

Another important objective was to devise a method by which the fuel
pumps could be replaced quickly and safely, without requiring that the
liquid-hydrogen fuel tank be drained. The design solution to this proYlem
is described in Section 5.3.6. TIncluded are drawings and a description of
the physical configuration of the pump mounting, the method of changing the
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Figure 196. - C.G. travel with blocked feed line.
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pump without draining the fuel tank, and a tool designed to accomplish the
changing of the pump. Particular consideration was given to ensuring the
safety of the personnel involved in the operarion amd the integrity of the
equipment on the airplane.

8.4 Fuel System Malfunction Analysis

Table 84 provides results of an analysis of possible malfunctions which
can occur with critical LH, fuel system components. The components which were
analyzed are used in the engine fuel supply system, the refuel/defel system.
and the pressurization/vent system.

Under each of the system headings the table lists the component, its
normal function, possible malfunctions and their couse, and how the existence
of the malfunction would be detected. The result of the failure on operation
of the system is then described, proper corrective action indicated, and some
remarks offered which explain the consequences of the malfunction.

8.5 Reliability Analysis

Tne following reliability analysis provides an assessment of the proba-
bility of loss relative to the function of the two primary critical sub-
systems of the L fuel system. The design concept for the two critical
functions, fuel pumping and fuel venting, employ redundancy, thus enhancing
the functional reliability. In developing the probability expressions,
Trans World Airline Boeing 747 statistics for average flight duration of
6.1 hours and an average daily utilization of 12.2 hours werz used as the time
base for the equations. Thus, in the nominal case, the aircraft is expected
to fly two flights per day. Component failure rates which are estimated to
be realistic and were assumed to be allowable for an initial evaluation of
the systems are listed in Table 85. Where two numbers are listed the number
in parenthesis represents the allowable failure rate in the speciriied mode.

8.5.1 Pumping and distribution system. - The reliability legic employed in
the following analysis is conventional using the binomial expansion to
evaluate the active/parallel redunaant systems. The proposed design concept
employs four pumping sources, each source using a three-pump cluster. Each
pump clustei has been allocated to a separate tank/engine feed circuit.
Successful completion of a prescribed daily flight schedule requires
operation of one of the three pumps in each cluster. Crossfeed between
pumping sources is provided thus allowing the continuous operation of all
engines should a failure of one complete pumping cluster occur during the
flight.
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TABLE 85. - ALLOWABIE FAILURE RATES FOR LH, PUMPING
AND VENTING SYSTEM COMPONENTS ~

Failure Rate

Component MIBF (N Per Flighe
{Critical Failure Mode) (hr) Hour
1. Pump - Fuel Boost 2 500 0.000400

(Failur=s to operate)

2. Control valve - Vent pressure

and regulation. 9 350 0.000107

e Primary regulstor - 0.000020

(Failure in closed mode) 50 000 (0.000015)

e Secondsry regulator - 50 00C 0.000020

(Failure in closcd mode) (0.000015)

e Vent valve & motor - 15 00C 0.000067

(Failure to open) (0.000033)
e Solenoid by pass valve -

(Failed in closed mode) 100 CO0 0.000010

(0.000001)

e Manual over-ride - press. 100 000 0.000010
regulator - (Failure to

operate when required) (0.000010)

-~ 3. Vent valve - Primary 50 000 0.000020

(Failure in closed wode) (0.000015)

4. Vent valve - Auxiliary 50 00C 0.000020

(Failure in closed mode, (0.000015)




8.5.1.1 Pl probability of loss: The probability (P,) of partial loss of the
pumping svstem for the typical 6.1 hour flight is il}ustra:ed and expressed
as follows:

RELIABILITY SERIES/PARALLEL DIAGRAM FOR Pl

PUMP PUMP PUMP PUMP

E—
x = 0.0004, A = 0.0004 A = 0.0004 {2 = 6.0004
A PUMP PUMP PUMP PUMP
A = 0.0004 A = 0.0004 A = 0.0004 A = 0.0004 N
| _[rome | | |_jPomer || PUMP | | PUMP
» =6.0004 A = 0.0004 A =0.0004 » = (.0004

ENGINE/TANK NO.1 ENGINE/TANK NO.2  ENGINESTANK NO. 3 ENGINE/TANK NO. 4

Reliability expression:

P, = 4 [1 - ® +3r% + 3nqzﬂ

Q = 1-R = probability of failure

where
A = Failure rate/hour = .0004
t = Flignt time = 6.1 hours

Base of natural logarithms = 2.71828

]
"

P = 4(1 - 0.999999986) = 5.76 x 10°°

To provide a basis for evaluating whether a ziven probability of failure
is acceptable or not, current practice with commercial aircraf: is as follows.
In cases where failure of a component or system would result in loss of life
or aircraft, P must have a value not greater than 1 x 10~9. Where failure
would result in no hazard to life or aircraft but might require cancellation
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or diversion of a flight, P is usually required to be not greater than

1x 1076 or 1 x 10-7. Accordingly, the value of 6.4 x 10~/ calculated for
this instance is acceptable and the assumed failure rate for boost pumps
shown Iin Table 85 is valid as a design target.

8.5.1.2 Pj probability of loss: P, = Probability of loss of one of the four
pump clusters during 2nd flight of the day (6.1 hours), assuming one pump in
each of the four pump clusters has already failed.

RELIABILITY SERIES/PARALLE!. DIAGRAM FCR P:

PUMP PUMP PUMP PUMP
—
x =0.0004 l » = 0.0004 A = 00004 A = 0,0004
PUMP PUMP PUMP F;BMP
» = 0.0004 x = 0.0004 > = 0,0004 = 0.0004

Reliability expression:

2
Pz'l‘(Q)
Q=1- R = Probability of Failure

R = e—)d:

where

X = Failure rate/hour = 0.0904

r
]

Flight time = 6.1 hours

e = Base of natural log.

P2 = 2.3x10
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This probabilicy of failure is marginal for acceptance as a non-hazardous
occurrence. A logical conclusion is that the convenrional requirement te
adhered to, namely, that an aircraft not be dispatched if more than two pumps
are failed.

8.5.1.3 P-. probability of loss: P3 = Probability of flight diverting to an
alternate landing site due to the loss of one pump cluster which would dictate
crossfeed control to the affected engine.

RELIABILITY SERIES/PARALLEL DIAGRAM FOR P3

PUMP CLUSTER
NO. 1

PUMP CLUSTER
p———— aea——

NO. 2

PUMP CLUSTER
NO. 3

PUMP CLUSTER
NO. 4

Reliability expression:

4
P3 = Rl

Rl = Reliability of Pump Cluster = 1 - Q3

3
+ 4R}Q

Q=1- R = Probability of Failure

R=e
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where

A\ = Failure rate/hour,/pumm = 0.0004

Fligh:z time = 6.1 hours

n
]

Base of natural log.

1]
n

P 6

3=5x 10t

8.5.2 Fuel venting regulation and control svstem. - Similar to the pumping’
distribution syvstem, the reliability logic employed in this system uses the
conventional binomial expansion equation to evaluate the probability of
failure. The design concept emplovs redundant control valve logic and re-
dundant vent valve logic. Within the control valve the design uses
redundant control for pressure regulating with different regulator pressure
settings. This concept provides the flight engineer the capabtility of monitor/
indication of a faulty primary regulator. A manual override function to tle
pressure control valve is provided thus affording a third level of control
for venting. The vent valves are single regulating valves, i.e., the
auxiliary valve in a reliabilicy diagram parallel to the primary vent valve.
Probability of the loss of the venting system is illustrated and expressed
numerically as follows:

P& = Probability of the loss of the Venting Svstem during a 6.1 hour
flighe.
RELIABILITY SERIES/PARALLEL DIAGRAM FOR P4
PRESS. REG.
\ = 0.000015 P‘T
/q& VENT CONTROL
VALVE R
. A = 0.000033 \/ 1
PRESS. REG.
» = 0.000015 R(CONTROL & REG.)
SOLENOID VALVE OVERRIDE
(NORMAL OPEN) CONTROLLER
A = 0.000001 A = 0.00002
R{OVERRIDE)
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PRESSURE CONTROL AND VENT SYSTEM LOGIC FOR P,

CONTROL VALVE PRIMARY

) VENT VALVE
l R R3 j
i L

CONTROL VALVE AUXILIARY
R2 VENT VALVE
R4

Reliability expression for typical control valve logiec:

Ry=1- ( 1- R(con:rol & reg.)) (1 - R(override))

R=e

where

A = Failure rate for the failure mode defined in Table 85.
t = 6.1 hour flight

Base of natural log.

[0
L}

Rl = 1 - (.000033008 x .000021)

R, =1- 6,900




Reliability expression for pressure control and vent system logic:

2 2
o - (6.9(10'10)) + (6.1(10‘5))
L=

P, = 3.6 x 1077
-

It is concluded that the LH, fuel system arrangements as specified herein
will meet operational requirements ar least as rigorous as those of current
transport aircraft. The only recommendation is that dispatch regulations
raquire that not more than two pumps can be failed.

8.6 Safety and Fire Protection

The usual precautions taken to minimize fire and explosion hazards in
hydrocarbon fueled systems, such as separation of combustibles from ignition
sources, compartaentization, compartmen: draining and purging must also be
observed in the LH, airplane. However, the characteristics of cryogenic
hydrogen require unique precautions in all of these areas.

Because of the low spark energy required to ignite gaseous hydrogen,
electrical and electrostatic discharge levels which are acceptable in
hydrocarbon/air misxtures will have to be reevaluated for acceptability in
the presence of hydrogen/air mixtures. On the ocher haad, the combustible
limiz of Hy = Air (4 percent by volume) is considerably higher than that of
gasoline-air (1 percent). These effects may require a redefinition of what
constitutes an explosion proof component. In this regard, it is probable that
flame arrestors, as now conceived, will not be effective for hydrogen/air
mixtures.

8.6.1 Compartment purging. - Compartmentation, to localize and minimize the
effects of fire as well as to separate sources of potential fuel leaks from
areas containing potential ignition sources, will be used extensively. Each
compartment can be drained ard vented, or protected by fire detecting and
extinguishing systems effectively. Because of the low density of gaseous
hydrogen, each compartment in which hydrcgen can be released must have vent
outlets at the top of the compartment as well as at the bottom. Eachk com-
partment will incorporate ram scoops for inflight 2ir purging. Those com-
partments having a high probability of hydrogen leaks under ground static
conditions will incorporate an active venting system using fans for forced
circulation when a leak is detected. Compartment drainage will be used where
the hydrogen leak can be large enough for some of it to accumulate as a
liquid. Hydrogen detectors (sniffers) will be placed at vent exirs to detect
and locate gaseous Hy leakage. Leakage will be indicated in the fiight
station.
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The extremely low temperature of the stored hydrogen can create an
environmental hazard for personnel in and around the airplane. Hence, it is
essential that all points of discharge for liquid or gaseous hydrogen be
Temot: tO areas normally cccupied by people.

8.6.2 Nitrogen inerting. — Both of the preferred fuel containment systems,

Nos. 3 and 4, use a N, purge system to prevent moisture accumulation and freez-
ing in the flexible open cell foam insulation layer beneath the outer protective
covar. This has the added advantage of inerting the space surrounding the fuel
tangs in the event of Hy leakage since the GN, purge gas is vented overboard.
The system is functionally the same as that described in Sectiom 6.8.

The volume requirements for N7 are very small and the total system
weight is estimated to be 95 kg (210 1b) per aircraft, including the Ky purge gas.
Spaces surrounding the tank ends and lines for these systems will be purged
as described above in 8.6.1.

8.6.3 Preparation for repair of insulation ieaks. - Insulation leaks do not
normally constitute a critjical safety item. However, certain precauticaos
must be observed when emptying the fuel system or tamks of liquid hydrogen
in preparation for repair of the imsulation. The effect of a hydrogen leak
will almost always cause condensation and solidification of air by the
process of cryopumping in the vicinity of the leak. As the liquid hydrogen
is removed from the tank or line where the leak occurs, the system tempera-
ture will rise, warmed by the surrounding atmosphere. -If this process is
too- rapid, the rate of air vaporization may be so high that large sections
of insulation may be damaged, or even blown off, by the rapidly expznding
air. Hence, the rate of heating should be controlled by monitoring the
rate of removal of the hydrogen fuel.

8.7 Adjustments Required in FAR or Industry Standards

The use of hydrogen as a fuel for aireraft instead of a hydrocarbon
fuel will affect many of the standards currently used in the industry.
The standards most directly affected are the Federal Airworthiness Standards
for Transport Category Airplanes (FAR Parc 25), Airworthiness Standards
for Aircraft Engines (FAR Part 33), and the National ¥ire Protection Associs—
tion documents for Aircraft Fuel Servicing (NFPA No. 407) and Aircraft Fuel
System Maintenance (NFPA No. 410C). In the following paragraphs, affected
parts of the standards are listed, as well as the effects that must be
considered when liquid hydrogen is used as a fuel.

FAR Part 5

25.801(d} ~ In ditching operaticns where structural damage can result in the
removal of large sections of fuel tank insulation, a jettison system may be
required o preclude excessive tank pressures being developed by the rapid
vaporization of liquid hydrogen. Alternatively, a blowout .isc of generous
proportions should be provided.

434



25.951 General
(a) ok

(b) and (c) -~ The effects on engine operation of the introductiou of
air or water in the fuel does not apply to a hydrogen fueled airplane because
contaminants of this type cannot be tolerated in liquid hydrczen fuel tanks.

\0) Revise - "Each fuel system must be designed so as -0 prevent vapor
being introduced to the engine pump, if such should momentarily ocrur, it
shall nor result in an engine flameout."

(¢) Revise - "Each fuel system must be capable of sustained operation
throaghout the aircraft operating envelope - including air start - with the
liquid fuel in an initially saturated state."
25.953 Fuel system independence - ok
25.954 Fuel system lightaing protection - ok
22.955 Fuel flow

(a) ok

(b) ok

(¢) Add - "No flameout or interruption of engine thrust shall occur
when switching from one tank to another.®

25.957 Flow between interconnected tanks - ok
25.959 Unusable fuel supply ~ ok
25.961 Fuel system hot weather operation.
(a) 1, 2, 3, 4 - ok
{(a) 5 - Delete. For hydrogen fueled airplanes, the fuel system must
perZorm satisfactorily with the tank ullage pressure equal to the vapor

pressure of the fuel.

(b) Delete last sentence.

25.965{2) (1) and (2) Hydrogen fuel ranks are closed systems in which the
pressure is a function of tr~ liquid fuel temperature.

(c) For hydrogen tanks, the fuel temperature during the fuel tank

test must be determined by the maximum vapor pressure to be encountered
during actual operation.
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25.967(b) For hydrogen tanks, spaces adjacent to che tank wall cannot be
ventilated because the air would be liquified. Ventilation external to the
tank insulation may be advisable but the insulation must be sealed to prevent
introduction of air to areas adjacent to rthe tank wall.

25.969 Fuel tank expansicn space - Revise as follows:

Eacn fuel tank must provide a positive expansion space beyond that required
by consideration of the following:

(1) Contraction of the tank from the normal ambient to the cryogenic
condition and expansion resulting from pressurization.

(2) Expansion of the fuel whea warming from the as-loaded density to
that corresponding to a saturated liquid a: the tank design
pressure

(3) Space occupied by structure, lines and equipment

It must be impossible to fill this total expansion space inadvertently with
the airplane in a mormal ground attitude.

25.971 Fuel tank sump - delete

25.973 Fuyel tank fiiler conmection - delete

25.975 Fuel tank vents and carburetor vapor vents - Revise as follows:

25.975 Fuel tank pressurization and venting
The fuel tank pressurization and venting system shall:

(a) Maintain tank prassures within the design values during all normal
and emergency ground and flight conditions.

(b) Prevent overpressurization beyond :the limit pressure In the event
of any single or probable combination of failures during refueling,
ground bhold, and all flight conditionms.

(c) Prevent air ingestion intc the tank and vent lines.

(d) Avoid vent stoppage by dirt or ice formatiom.

(e) The vent(s) shall discharge in an area clear of the aircraft amd
potential ignition sources both on the ground and in flight.

436



o

-

25.977 Fuel tank outlet

(a) ok

(b) (c) (d) (e) - delete
25.979 Pressure fueling system

(a) Revise "Each pressure fueling (and vent) connection to ground
equipmens must have means to prevent the escape of hazardous quanticies
of liquid or vapor, both upon initial connectiun and disconnect.

(b) (1) (2), ok

(¢) ok

(d) Add - "Means must be provided to prevent excessive pressure rise
in the fueling mapifold due to vaporization of trapped liquid."

25.981 Fuel tank temperature. Delate
25.991 Fuel pumps

(a) ok

(b) ok
25.993 Fuel system lines and fictings

A paragranh must be added to this section to indicate that no materials
which would be adversely affected when exposed to liquid hydrogen can be in
the fuel svsten. '

(a) () () (d) (e) (£) - ok

Add (g) "All lines connected by a means of positive shutoff must be
provided with a means of preventing excess pressures due to vaporization of
the trapped liquid fuel"
25.994 TFuel system components — ok
25.997 Fuel strainer or filter - delete
25.999 Fuel system drains - delete

25.1001 Fuel jettisoning system - ok

25.1305 Fuel tank pressure indicators must be added at the flight station.
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FAR Part 33

3.3.67(a) For a hydrogen fueled engine, operation with water in the fuel
is not required.

NFPA

No. 407 Aircraft Fuel Servicing - A section must be added specifying methods
of servicing a hydrogen fueled airplane.

No. 410C Aircraft Fuel System Maintenance ~ A section must be added specify-
ing methods of maintaining a hydrogen fueled airplane.
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9. EQUIVALENT JET A~FUELED AIRCRAFT

The characteristics of a conventionally fueled aircraft designed to per-
form the identical mission using equivalent technology and design requirements
as the LH--fueled aircraft of Section 8 were developed in order to be able to
compare the two on an equitable basis. As noted in the introduction to
Section 8, the revised and updated version of ASSET was used to generate the
characteristics of the Jet A-fueled aircraft presented herein.

The first requirement was that the characteristics of a Jet A-fueled
engine be developed which would have performance and weight based on the same
technology as was used to represent the LH -fueled engine discucsed in
Section 4.3. It was then possible to parametrically generate an airplane
design using the same guidelines and operational requirements as were used in
the LH, aircraft design study.

The results of this work are reported in this section, together with a
comparison of characteristics and performance of the two aircraft.

9.1 Jet A Engine Definition

The objective of this effort was to provide definition of a .Jet A-fueled
engine which would be directly comparable in technology to that of the LH,-
fueled design previously discussed. The hydrocarbon fueled erzine which ¥as
used as a basis for t.e earlier, equivalent aircraft studies reported in Refer-
ence 1, couid not be used because of changes made in assessment of component
performance and efficiencies which could be available for initial operational
capability in 1990-1995, which were incorporated intc the LH»> engine design.

Accordingly, a new design of Jet A engine was developed in which all
characteristics matched those of the LH, engine developed by AiResearch -
Arizona Division; see Section 4.3. Basic component efficiencies and perfor-
mance were matched and the only changes made were due to differences in proper-
ties of the two fuels. The only modifications made to the AiResearch hydrogen
fueled engine's tl. .modvnamic cvclz in order to develop the Jet A engine ther-
modynamic cycle were those due to the change in high pressure turbine cooling
air temperature. In the hvdrogen engine, the turbine cooling air is cooled by
the fuel. Since this heat sink is not available for the Jet A engine, the
turbine cooling airflow was increased from 3.2 percent to 7 percent. This
increase maintains the same level of turbine cooling on both engines but
decreases the high pressure turbine efficiency by 0.5 ercent.

The aerothermodynamic changes that were required to make a hydrogen
fueled engine into a Jet A fueled engine involved modification of the fuel
lower heating value to 42.8 x 106 J/ke (18 400 Btu/lb), compared to
119.9 x 106 J/kg (51 590 Btu/lb) for hydrogen, and modification of the thermo-
dvnamic properties of the combustion products from the combustor to the nozzle.
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The thermodynamic cycle properties listed in Table 86 were used in the
gas turbine synthesis computer program, (Reference 39), witn the combustion
products subroutine supplied for hvdrocarbon fuel and air to calculate off-
design performance of the Jet A engine. The resulting installed engine per-
formance of the Jet A engine is given in aAppendix G.

To have a valid comparison, the Jet A-fueled engine was Gesigned to be
physically identical to the AiResearch hydrogen engine with the exception of
the fuel sysrem and the heat exclhiangers. Accordingly, both the physical
dimensions and the weight of thae Jet A engine are identical with those of the
AiResearch hydrogen engine, except for allowances for the fuel system and the
heat exchangers. The weight difference amounts to 95 kg (210 1b) for the
baseline case. The same scaling relationships are valid for both engines.

TABLE 86. - THERMODYNAMIC DESIGN PARAMETERS

Inlet recovery 0.991
Fan efficiency 6.892
Fan pressure drop AP/? 0.015
Compressor efficiency 0.862
Turbine cooling air 7.0%
Combustor efficiency 1.0
High pressure turbine efficiency 0.895
Low pressure turbine efficiency 0.900
Fan nozzle thrust coefficient 0.991
Core nozzle thrust coefficient 0.988
Horsepower extracted 125
Horsepower, accessories 21
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9.2 Comparison: LH, vs Jet A Equivalent Aircraft

The design of a conventienally fueled transport sized to carry 400
passengers, 10 190 km (5500 n.mi.) at a cruise speed of Mach 0.85 was accom-~
plished using the ASSET computer program. The parametric optimization process
was carried out in che same manner as previously described for the LH,
aircrafet. -

The characteristics ¢ the resulting Jet A-fueled airplane are listed in
Table 87, along wizh corresponding data on the LH, counterpart. The LH, air-
plane data are a repeat of that listed previously™in Table 81. They are shown
here for convenience in comparing.

The Jet A-fueled design is identical in configuraticn to the Jet A air-
¢raft reported in Refersence l except that it is heavier and has a larger wing.
The larger wing stems from the more conservative engine component performance
postulated for the new engine designs (both LH, and Jet A) in the present
study, which in turn leads to greater fuel weifnt because specific fuel con-
sumption is increased. The result is that, although both the previous (Refer-
ence 1) and the present Jet A designs were found to be optimum with a wing
loading of 610 kg/mZ (125 1b/£t2), the greater fuel weight required an increase
of 5262 kg (11 600 1b) in gross weight.

The LH> engine performance did not suffer as large a decrease, relative
to the Reference 1 work, because ways were found to exploit the heat capa-
city of hydrogen which partially compensated for the effects of the reduction
in component efficiencies and performance.

Comparing the aircraft designs shown in Table 87 the LH, version is seen
to offer quite significant advantages in nearly all rarameters. The only
parameter in which the Jet A airplane shows an advantgage is L/D. This is
because its fuselage is smaller in diameter [5.84 m (230 in.) vs 6.63 m
(261 in.)] and also shorter [60.05 m (137 ft) vs 65.72 m (215.64 fr)] relative
to the LK., aircraft. In addition, the Jet A design has a larger wing. The
combination of the large wing with a smaller fuselage, compared with the small
wing and a larger fusalage on the LH:; desiyn leads to the ten percent
advantage in L/D for the Jet A uirplane.

However, this advantage is completely nullified by the almost 300 percent
disadvantage the Jet A design suffers in cruise SFC. This leads to the tre-
mendous difference in fuel weights between the two designs and accounts for
the advantage the LH, aircraft enjoys in price, DOC, and energy utilization.

The direct operating costs shown in Table 82 were calculat. i on the basis
of tue respective fuel prices shown at the bottom of the table. Figure 197
shows the effect variation in fuel price would have on DOC for both aircrafct.
The bageline prices of $4.74 per GJ ($5/106 Bru) for Jer A and $5.69 per GJ
($6/10° Btu) for LH, were specified to represent reasonable costs assuming
both fuels are manufactured from coal and water. As a point of reference, U.S.
domestic air carriers teday (November, 1977) are paying an average of about
10.6¢/¢ (40¢/gal) for Jet A produced from petroleum. The direct operating
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TABLE 87.

— COMPARISON:

LH2 vs JET A SUBSONIC TRANSPORT AIRCRAFT

——
Scat xkm | seat n.nl}

(400 Passengers; 10 190 km (5 500 m.mi.); Mach 0.85)
Razio
Z,H: Jet A Jet A/L‘i:)
Gross “e. kg (1b) 163 $I9 (372 200) | 232 056 (511 600) 1.37
Total Fuel Wz. kg (1b) 25 625 (S0 <60) | & 77 (ifie 9003 11e
Block Fuel WE. kg (id) 21 021 (=7 0oTO) 7o 3os (159 SeQ) 3.35
Operating Eapey e, kg (11 103 305 (227 750) | 107 3e3 (i3 T 1.04
Aspect Razic - o 9
Zing Area 2 (fe) 296.5  (3195) 3503 12093) Loos
Sweep rad (dog) 522 e 524 30
Span = (ft) S1.7 (t08.8) $5.5  (181.9) 113
Fuscelage Length = ({z) 85,7 (215.0) 60.0 197 Sl
L/D - Cruise - 17.4 19.1 1.0
S$FC - Cruise A5/cax (£ 1)) 0.206 (0201 615 (.603) 2,99
| tnicial Srulse ale. a (£1) 11 S50 (35 000) | 1l S50 (35 000)
| ing Loading keims (/e | s68.8 (116.%) 610.2 (125 1.07
! Thrust/Neight Xlkg (=) 3.20 (.326) 3.1 (.325) .993
No. Epgtnes 4 4
Thrusz Per Engine X (1b) 115 000 (3O 350) | 18 900 (a1 567) 1.37
(SLS. uninscalled)
FAR T.0. Ciscance n (fr) 2230 {8000} 2331 (T980)
FAR Ldg. Distance n (fe) 1768 (5300) 1582 (5200}
2nd Scg Climdb Grad. (Eng Ourd .0300 .0105
Approach Spred a/s (KEAS) 0.2 (138.4) u5.5 (127.3)
Weight Fractions percent
Fuel - 15.17 36.53
Payload - ' 23,64 17.20
Sgructure - 32,38 26.32
Prcpulsion (lncludes
Tanks & Fuel Systems) - 9.07 5.37
Price $10% 43,39 24,5 1.03
2oc (@ — (S| 0.369 (1.609) 0.90;  (1.579) 1.04
s03T & (scﬂt n.nt)
Encrgy Ueilizaclon Beu 636 (1118) 7SS (1333) 319

(3) DOC based on L, cosc = $5.69 per GJ (56/10° Bru = 3lc/1b)
Jdet A cost = $4.74 per G (S.‘)/l‘.!b Bru = 62.2¢/pal)
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Figure 197. - Semsitivity of DOC te fuel price for both LH, and Jet A aircrafe
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costs calculated for the LH, airplane include consideration of the increment
due to fuel losses from boiloff.

Two things are significant to note regarding Figure 137. One is the
spread of $1.67 per 10® Btu measured from the baseline price of Jer A to a
value which can be paid for LH,; and still provide the operator with equal DOC.
The other is the divergence of the two lines, indicating that as fuel prices
continue to climb, the advantage for LHZ will steadily increase.

©¢.3 Off-Design Payload Capability

in comparing LH; and Jet A - fueled aireraft it 1. important to recognize
that the difference in the proper:ies of the fuels ..ads to differences in
their containment systems and that this, in turn, leads to widely differing
capabilities in off-design payload/range operation. Within limits, con-
venticnally fueled transports can readily interchznge fuel weight for payload
to achieve extended ranges. On the other hand, hydrogen-fueled aircraft are
volume limited insofar as fuel capacity is concerned. Therefore, the only
increase in range capability which can be obrained with LHy fueled aircrafrc
derives from the reduction in weight if the number of passengers or pounds
of cargo is limited. Fuel weight cannot be increased bevond that carried for
the design mission without major modification of the airerafr fuselage
Structure.

Figure 198 illustrates the situation. 7The design mission of the aircrafc
in the subject study was to carry 400 passengers 10 190 km (5500 n.mi.)
(point 1). By limiting the passenger load to only 250, i.e., reducing pay-
load from 39 916 kg (88 000 1b) tec 24 948 kg (55 000 1b), and by carrying an
equivalent 14 969 kg {33 000 1lb) increase in fuel welght, rche range capability
of the Jet A airplane is increased to 12 501 knm (6750 n.mi.) (point 2).
There is adequare volume in the wing box and center section to accommodate
that much more Jet A fuel. On the other hand, if the LH, airplane payload is
reduced to 24 948 kg (55 000 1b), its maximum range is ificreased to only
10 618 km (5732 n.mi.) since its fuel capacity cannot be increased. (point 3).

A parametric investigation was made to determine what size LHy airplane
would provide the extended range capability of the Jet A design with 250 pas-
sengers, and yer would also be capable of carrying 400 passengers at shorter
ranges. The result is shown on Figure 198 as point 4. With the full com-
plexnent of 400 passengers, the resized L4, airplane will have a range capa-
bility of 11 982 km (6470 n.mi.). -

The table on the figure provides a summary of some of the characteristics
of the aircraft involved. It may be observed that the energy use rate of the
LHp fueled airplane is always less than that of the Jet A version for
comparable missions. ’

This issue may be summarized by pointing out that due to the difference
in fuel contaimment provisions it is not feasible for LHy-fueled and Jer A-
fueled aircraft to have exactly the same payload/range trade-off capability.
For the general size of aircraft studied herein, a LH,~fueled design can pro-
vide a larger envelope of useful payload-range capability and still perform
any specified mission within the envelope using less energy than a corres-
ponding Jet A-fueled version.
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JET A LH,
POINT DESIGNATION @ @ @ @ @ @
PASSENGERS 400 250 400 250 400 250
RANGE km 10190 12500 10190 10620 11980 12500
(nmi) (5500) (6750} {5500) (5733) {6470) {6750)
TCGW kg 232060 | 232060 168830 | 154090 | 180810 | 166 060
(ib) {511 600; | (511 600) | [ (372 200) | (339 700) | (398 610) | (366 100}
BLOCK FUEL kg 72370 86 190 21 620 21620 26 590 26 590
{ib) (158 540) | (199 020) (47670} | (47670) | (58610) | (58 610)
OEW kq 102379 | 107370 103310 | 103310 | 108340 | 108 340
b) {236 700) | (236 700) | | (227 750) | (227 750) | (238 840) | (238 840}
ENERGY kj
USE RATE TN 758 179 636 976 665 1020
Btu
PAX nmL {1334) (2073) {1118} {1716} {1168} (1792)
R T ]
JET A (CONSTANT GROSS WEIGHT)
400 %@)
) LH
\ {CONSTANT
/ FUELWT.)
/

PASSENGERS

200

N |\
\\ _— ‘\
‘\ \ \\
\
© Ne

6000

RANGE (n. mi.)

Figure 198. - Off-design payload. range capability.
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10. TECHNOLOGY DEVELOPMENT

Throughoct this report, at the end of most major sections, research and
technolegy development items pertinent tc the subject are listed. Each of
these items 1s considered significant and necessary for the ultimate develop-
ment of LH,-fueled aircraft. In this section a development program is pre-
sented which is the result of consideration and evaluation of these individual
items. The items are listed in order of perceived priority, 1 through 5, to
indicate recommended scheduling. The priority rating is nor intendad to
designate relative significance or importance.

10.1 TFirst Priority

Item 1} Large Model Tank Fabrication and Test. - Design, fabricate, and
test a sizeable model of an aircraft tank, large enough that minimum gage
considerations will not seriously distort the heat rransfer properties of the
structural attachments and the insulation system. A half scale (approximately
10 fr dia) model of either of the subject aircraft tanks is suggested o pro-
vide valid experimental data atr a reasonable program cost.

Such a tank would serve a number of useful functions:

A. TFocus design attention on detail problems which tend to be overlooked
or glossed-over in conceptual studies, e.g.,

® specific fabrication methods

e attachment of appendages

® structural support provisions

® inspection and repair provisions.

3. Provide experience in fabricating, maintaining, and operating a
sizeable flightweight tank insulated to meet aircraft requirements.

C. Permit experimental determination of the heat transfer mechanism in
a large, horizontally inclined, insulated .ank containing LEj.
Nusselt Number, tank wall temperatures, vapor volume temperatures,
and the temperature and quantity of the GH, vent~d from the tank
can 2ll be determined as functions of the follo _ag conditions
within the tanks, and for various liquid levels:

o stratified {liquid and vapor)
e turbulent (liquid and/or vapor)

® simulated aircraft motions.
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. Investigate aircraft tank filling procedures. Experimentally deter-
mine the preferred design of plumbing system and operational pro-
cedure which will permit refueling of aircraft tanks within specified
time limits.

E. Test various quantity sensor devices to determine which provides most
reliable data for an aircraft tank application. Conduct tests with
tank in motion to simulate aireraft ride quality with resultant
agitation of liquid surface.

F. In conjunction with Items 4 and 7 (following), conduct flow tests
of a representation of an engine fuel supply and control system
to determine:

e system chill-down time
e ctransient response characteristics

e delivery conditions of the LH, at the engine-end of the feed
system

e other characteristics as described under Items 4 and 7.

These flow tests could be performed with the entire feed system func-
tioning except that the output from the engine-mounted pump would be
valved to simulate engine consumption vs throttle setting. Flow
delivery from the feed system could be captured in a ground storage
tank for return and reuse in the experimental equipment.

Item 2.) Pump Development. — Design and development o LHo pumps for the
aircraft application is recognized as a major requirement. The following
characteristics must be provided by both the boost pumps an< the high pressure,
engine-mounted pumps:

e Long life

e Reliable

e Maintainable

° Efficient over a wide range of flow rates and pressures
e Qualify as line replaceable units.

The proposed effort would include design, fabrication, and experimental devel-
opment to achieve these objectives.

An inirial step would be preliminary design of pumps for both applica-

tions in sufficient depth to establish the bearing requirements. Design,
fabrication, and feasibility testing of bearing systems would then be carried
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out to demonstrate that these requirements can be met. The bearing feasibilicy
tests would be conducted in a bearing test rig. It is necessary that both the
boost pump and the high pressure engine pump be designed, built, and tested
because of the difference in their design requirements and their potential
bearing designs.

tem 3.) Svstems Analysis of Wavs to initiate LH2 Fuel Service in Airline
OCperations. ~ Analyze airline route structures, traffic densities, and sircrast
usage throughout the United States as projected for the 1990-2000 time period.
In addirion, inc¢lude consideration of connecting internmational routes, with
special attention to routes to those countries moest likely to require early
relief from us: of hvdrocarbon fuel.

A. Determine feasible ways to initiate use of LH, fuel in commercial
transport aircraft, for example,

e by airline
e by city-pair, e.g., L.A to Washingron
e by region, e.g., West Coast

B. Project the fuel changeover from U.S. domestic airlines to inter-
national carriers.

C. Establish a feasible schedule for iastallation of LH, facilities at
airports and determine costs and fuel requirements vs years.

D. Define primcipal problems, costs, and possible methods of funding.

E. Determine a logic for initiation of hydrogen in society, i.e., should
the air transport industry be the first to convert, rather than other
possible candidates, e.g., urilities, industry, etc.

10.2 Secoad Prioricy

Item 4.) Engine Fuel Supplv System Experiments. - Design, fabricate, and
test a complete engine fuel supply system inciuding boost pumps, valves, and
line. Duplicate a feed line to an outboard engine with equivalent turns,
joints, and length to represent the aircraft installation. Moun: on tank
(Item Ne. 1) per aircraft installation. Experimentally determine:

. operational characteristics

o chill-down time
o flow response transients

0 temperature rise vs flow rate
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. vent requirements vs time afrer simulaied engine shutdown

® requiremanis to maintain insulacion properties

L) structural support requirments.

Two tvpes of fuel lines are viable candidates. Jne uses a vacuum annulus
between concentric tubes to provide the imsulation. The other also uses con-
centric tubes but has clesed cell foam ir the :nnulus. Experimental work is
sequired on both rvpes of desiyns to determine a preference on the basis of

° fabricabitlity

[ maintenance

® opeoriational characteristics

] susceptibilicy to mechanical damage.

Item 53.) Advanced Engine Design Studv. -~ The engine conceptual design
study conducted in the present progran was a very abbrgvvated effors. It was
not intended to be an investivation which would provide final answers to all
guestions about LH: engine desicsn. Rather, it served as a nuide, primarilvy
in determining the petential of several possible wivs to use the heat capa-
city of hvdrogen to geod advantape. Accerdingiv, it s prepesed that a com-

i ation of ’

prehensive design study be nnde which would invelve investig
the desien neotential of LH--Yucled rurbofan enpires on b
more in-depth basis. The obyect ves would be as follows:

ooTre ol
a

L) stablish design and parformance characteristics of an advance

ign. quict, clearburmine LEs-fueled engine o matceh requirements
of a sclected airplane design. Trovid ize, weight, cvele charac-
istics. performance. and cost estimates.

]
"

ts for major compronents. e.y.., high rressur
s, combustor Jdesign, nei : :
em, corpressor. fan. furhines, and co

o,
.

) Provide input for Item

Item 6.) Adrcralit Vent Svstem Desigen and Test. - The vent which must be
provided on an aircraft fueled with LH, presents problems which are unique.

) The vent must be capable of releasing crvogenic gascous nvdrogen at
any time the pressure in the aircraft fuel tanks exceeds 3 set
upper limict. The release can be inte cold moist air which can
cause the vent valve to freeze when venting stop=. Methods nust be
devised to avoid the consequences of this happening.

i~
I~
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e The vented gas can catch fire. Surrounding aircraft structure must
be protected so as to be invulnerable to this occurrence.

° The vent must be provided with the capability of preventing external
flame from prcpagating upstream into the vent system rubes leading
to the fuel tanks., Conventional flame suppressors used on hyvdro-
carbon-fueled zircraft will not be effective with hydrogen vapor
fires because the very high flame speed and short quenching distance
of hvdrogen appears to make the system mechanically infeasible.

e The vent exit must be protected from the :ffects of lightning
strikes.

The proposed techneclogy development would involve design and fabrication
of a vent system mounted in representative aircraft structures, and tests con-
ducted under typical exposure conditions.

10.3 Third Priority

Iten 7.) Engine Fuel Control $vster Testing. - This item is contingent
upon Items 1, 2, 4, and 8A having been successfully completed and the hard-
ware being available for additional flow testing with LHy;. The objective would
be to determine transient response ch2racteristics of the entire fuel supply
svstem (to one engine) including the control network. The program would con-
sist of both ar analytical and an experimental effort. An analvsis and an
analog simulatioz of the engine fuel deiiverv and control svstem would be made
to determine performance capability, including the effect of transients. Tre
experimental effort would involve fabrication of a representative system and
testing to sinulate the following operations and verify the analysis:

. start
) shutdown

) control representing flow variation ro satisfy design flighr
conditions.

Use of the 270 Vdc system to control boost pump output with brushless dc =ctor
drives, a high temperature sensor in the engine, and micreelectronics in an
advanced design ¢f fuel control system will make this development item partic-
ularly desirable because of the great flexibility offered by the system.

Item 8.) Engine Technology Development. - The results from the advanced
engine design study, Item No. 5, will provide the basis for this task. It
involves design, fabricaticn, and test of components of an advanced design of
LHz-fueled engine, including:
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e Heat exchanger

e Combustor

° Cooled turbine vanes and blades

The objective is to develop component technology required to build a liqui
hyvdrogen-fueled engine incorporating features to capitalize on advantages avail-

able with the fuel.

Task BA) Heat Exchanger Development

Design and develop heat exchangers as required by the cngine concept,
e.g., to cool engine oil, compressor bleed air for cabin air conditioning and
turbine cooling, and to heat the fuel with the core engine exhaust. Experi-
mental tosting is required to demonstrate:

[ anti-icing protection

° heat exchanger effecriveness

e transient fuel flow response characteristics

. compliance with design requirements

Tasx &B) Combustor Experiments

Verv lictle experimental development work has been performed on cor—
busters for aircratft gas turbines where the components were designed to use
nvdrogen as the fuel. Work performed at NASA-Lewis starting in the late 1950's
used fuel injectors and combustor cans taken from existing hvérocarbon-fueled
engines, modified only as required. The work proposed here involves design of
iniecrion svstems and combustor configurations specifically for hydrogen fuel,
and experimental Jeferminaticn of the temperature profile and NO, concentra-
tions as Tunctivns of various design parameters. The objectives wculd be to
determine:

. a preferred geometry and design cf injectors and combustor ior
hvdrogen/air

e *he pracctical limits of NXO, peneration at the design combustion
temperature

o the variation of NOV as a function of design combusrtion temperature

® temperature profile characteristics as a function of injector design
and combustor ccnfiguration.
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Task 8C) Cooled Turbine Vanes and Blades

The present study showed the desirability of cooling the turbine cooling
air to reduce the bleed air requirement and ro gain HF turbine efficiency.
An existing engine could be used as a test article to develop a satisfactory
design of hp rurbine stage utilizing refrigerated air as a coolant. The test-
ing could be done in conjunction with the appropriate heat exchanger developed
in Task (A). Experiments would show:

o the effectiveness of blade and vane cooling as a function of air
quantity and temperature for various designs.

. the effect of cooling air flow rate on turbine efficiency.

Item 9.) Materials Development. -

Activity:

Conduct literature searches, obtain manufacturer's data, and perform
laboratory experiments.

Objectives:

A. Determine materials preferred for use as
¢ Cryogenic insulation for fuel tank
e Impermeable barrier to ex. - GH, or air
e Tank bladder/structural mater.

e Structural connection between cryoge... - tank and ambient
temperature aircraft structure

e Cryogenic fuel line/bellows/support structure
e Sealing surfaces for valves

B. Begin determination of effects of long-term exposure to hydrogen of
selected structural and component materials.

Item 10.. Hazard Studies and Tests. - Usz2 of LHZ poses different problems
related to safety, compared to conventional aircraft procedures and requirements.
The following tacks are suggested to explore thcse differences and to develop
appropriate preventive and combative measures for the hazards which exdist with
LHZ' This item is considered especially important because of the widespread
misapprehension which exists regarding safety of hydrogen. It is felt that
stud.es and demonstrations such as are proposed will provide a basis for dis-
pelling and quieting these fears which are largely based on lack of knowledge.
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Task 10a.) Study of Relative Hazards of LY, vs Jet A Fuel in Commercial
Aircrafs -

Activi [

Study representa:ivc designs of a selected size of commercial transport
aircratz: one fueled with LHA, the other with conventional Jet A.
\p37\~e the desiems for probable failure modes, both in-ilight and on
Where appropriate. supplement the study with analyvsis of

D-:J‘

A. 3v analvsis of probabilizies of varicus kinds of accidents. both in=-
A : cround. estirmate probable fallure modes and resulcs
cced with boch fuel svstems.

Expose instrumented fuselage sections of surplus transport aircraft to
fire from equal-enerpgy quantities of LH~ and Jet A fuel.

Objective:

Dezermine ¢t of fire fror burning fuel adjacent to passenger com
rartoent and compare relative hazards to crew and passengers.

3 o
lad)
'
]

Task 10C.) Safety in Nenfatal Crashes

Activityv:

Simulate nonfatal crashes with surplius aircraft components containing
fucl in tvpical tank structures. Perform duplicate tests with
surplus aircraft having fTue! tanks designed for LY, and for Jet A,

Objective:

Determine effect of simulated crash usinyg each fuel system and compare
relative hazard to crew and passengers.

10.4 Fourch Priority

Item 11.) Aircraft Fuel Svstem Test. - Before an LHs—-fucled aireraft is

committed to flight test a replica or model of its fuel system should be
tested on the ground. With equipment from all the foregeing tests, the major

t~
w
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portion of the aircraft fuel system will be available for this purpose.
Equipment from Items 1, 4, 6, 7, and 8, respactively, will provide the
following:

e A half scale model of one tank of the fuel containment system with
vapor return and fueling adapters

e Engine fuel supply system
® Aircraft vent system

° Engine fuel control system
® Heat exchangers

This will leave just the following items to be obtained in order to conduct
meaningful tests of a replica of a complete aircraft fuel system:

e Parts of the fueling/defuel system
) Parts of the vent and pressurizatiom system
® Leak detection system.

With the entire aircraft fuel system assembled, tests could be conducted
which would permit accomplishing the following objectives:

) Determine operational characteristics of an iantegrated design of
an aircraft fuel system.

e Provide a basis for writing design specifications for LH; fuel
systems and components suitable for aircraft service.

e Deteruine procedures for performing inspection and repair of LH,
system components.

e Determine effect of repeated flight cvcies and fueling/defueling
cycles on tank structure, insulation system, and fuel feed svstem.

10.5 Fifth Priority

Item 12. Flight Demonstration Program. — Following the ground tests of
the LHZ fuel system, the next logical step would be a flight demonstration
program. This would involve building a complete fuel system for an existing
airplane and flying the airplane using the LH; fuel system in a routire, oper-
ational manner for a significant length of tiwme, e.g., a year or more.
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Selection of the airplane should be given very careful consideration.

The aircraft needs to be big enough to contain at least one LH2 tank in the
fuselage, with sufiicient volume to provide for a range of ar least 4630 km
(2500 n.mi.). This would permit the converted aircrafit to be used operation-—
ally during the test pericd, tiits imposing a need to meet schedules ond offer-
ing a chance to show whether the LH> fuel system can be competitive in terms
of maintenance, reliability, and cperational requirements. On the other hand,
the selected aircraft should not be too big because 3f cost aspects.

The objestives of a flight demonstration program woul< be:

Learn how to handle LH» as an aircraft fuel in ~n operarional manner.

Determine the practicability of the crvogenic fuel svstem in terms of
inspecrion, maintenance, durabilityv, and performance.

Provide a basis for writing design and operstional specifications fer
tivdrogen-related equipment and procedures.

Establish confidence that hvdrogen can be used safely in airline-type
overziions.



APPENDIX A

PRELIMINARY MISSION FUEL FLOW SCHEDULE

For use during the early stages of the study it was necessary to establish
a representstive fuel flow schedule for the design mission. The following data
werre derived using the ASSET computer program and the charactaristics of the
400 passenge., 10186 km, (5 500 n. mi.) range, M 0.85 LHy-fueled aircraft from
Refererce 1. These data served as a basis for initial sizing of pumps, lines,
valves, etc., until the characteristics of the LH7 engine discussed in
Section 4, herein, were determined and the aircraft resized, Secticn 8.
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APPENDIX B
DESIGN CONCEPTS OF SELECTED LHz FUEL SYSTEM COMPONENTS

Five fuel system components having critical operational requirements

or technically challenging design requirements were selected for conceptual
design study. The components studied were:

o Fuel level control shutoff valve

e Ground fueling quick disconnect

3

1

Vapor recovery quick discoanect 1
e Absolute tank pressure relief and vent valve

e Absolute tank pressure regulator.

Bl.l Component Requirements

Operational and perfcrmance requirements were established for each se-
lected component based upon the preliminary fuel system analysis.

These
requirements were used as the starting point for the component conceptual f
,J%%desigus and, in some instances, iteration of the requircments was performed

to assure or improve development feasibility. )

In addition, some general design requirements were established which
applied to all components. These requirements had to do with materials
compatibility with GH, and LH,, materials corrosion resistance, avoidance :
of dissimilar metals contact, accessibility of the component for instal- .
lation and adjustment and, in some cases, means for indicating satisfactory
functioning or failure. These general requirements were also considered in :
the analysis and selection of the individual component design concepts.

Bl.1l.1 Fuel level control shutoff valve. - The fuel level control shutoff

valve was an electric motor operated valve, having the purpose of admitting
and stopping the flow of fuel to a LH, fuel tank. 1In addition, it had the

special requirement for a pressure relief valve get at 1.25 times the maxi-

pum stabilized blocked fueling line pressure to provide for thermal pressure
relief of the fueling line after valve closure.
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Significant parameters of the selected design were:

Rated flow 4.99 kg/sec (11.0 1b/sec)

Pressure drop 23.2 XPa (3.36 psid)

Operating pressure range 241 to 193 kPa (35 to 28 psia)

Operating temperature range 20.6°K to 328°K (37°R to 590°R) !
Duct diameter 7.37 em (2.90 in.) !
Weight 4.94 kg (10.90 1b)

Estimated MIBF 15 000 hr

A schematic diagram, and description of the valve design and operation
are presented in Figure 199.

For this valve and the following selected cusponents to be discussed,
the conceptua’ design, and estimates of performance, weight, and MIBF were )
based upon experience with similarly designed equipment. !

Also, for this valve and the following selected components to be dis-
cussed, the nonrecurring design and development costs, and the production
costs in the quantity of 350 ship sets plus 20 percent spares were estimated,
and the results used as an input to the ASSET evaluation of aircraft costs.

Bl.1.2 Ground fuelirg quick discomnect. - The ground fueling quick discon-
nect was a manually operated, aircraft fueling quick discomnect and shutoff
valve assembly, intended for use in the aircraft LH2 fueling operation. The
unit consisted of an airborne adapter moumted in theé aircraft at the fueling
interface, and a ground hose adapter mounted at the end of the ground fuel-
ing line. Each unit included an intermal valve which was normally seated,
preventing flow thru the valve, and which was automatically unseated when
the two mating units were joined and secured to each other.

L [
LE W e YR

Calide skt

1t was a design requirement that no hazard to personnel or equipment
occur if ice formed on the wmits prior to, during, or after the fueling op-
eration, and that the presence of ice on either mating unit not interfere
with the mating process. In addition, it was required that the design of
the mating units not permit ingestion of ice, water, or other contaminants
into the system during the filling process.

ERFAS

3

PR

It was required that the adapter in the aircraft be easily replaceable
and designed to break away withour damage to the aircraft if the supply
truck pulled away from the aircraft without discomnecting the supply hose,
and that the part of the adapter remaining in the aircraft automatically

close in the event of a break, té preclude the loss of hydrogen from the E f
aircraft. ;

Cdegy
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It was a design requirement that the quick disconnect be suitable for
manual handling, installation, and control, by personmel wearing the neces-
sary protective gloves and clothing, and that the required manual force of
installation and actuation not exceed 22.2 daN (50 1b).

From the safety viewpoint, it was required that the ground fueling
adapter be designed to preciude inadvertent mating with the vapor recovery
nozzle. It was further required that complete electrical contact be estab~
lished between the two adapters before they were connected, and that the
contact resistance not exceed 10 ohms.

Significénc parameters of the selected design were:
Rated flow 19.96 kg/sec (44.0 1b/sec)
Pressure drop 49.3 kPa (7.15 psid)

Operating pressure 110.3 kPa (16.0 psia)

Duct diameter 12.40 cm (4.88 in)
Weight
Airborne adapter 2.90 kg (6.40 1b)
Ground adapter 6.45 kg (14.21 1b)

A schematic diagram, and description of the quick disconnect design
and operation are presented in Figure 200.

Bl.1.3 Vapor recovery quick disconnect. - The vapor recovery quick discon-
nect was a manually operated quick disconnect and shutoff valve assembly,
intended for use in GH, vapor recovery during the aircraft fueling operatiom.
The unit consisted of an airborne adapter mounted in the aircraft at the
fueling interface, and a ground hose adapter mounted at the end of the
ground vapor recovery lime. Each unit included am internal valve which was
normally seated, preventing {low thru the valve, and which was automatically
ungeated when the two mating units were joined and secured to each other.

It was a design requirement that no hazard to personnel or equipment
occur if ice formed on the units prior to, during, or after the fueling op-
eration, and that the presence of ice on either mating unit not interfere
with the mating process. In addition, it was required that the design of

the mating units aot permit ingestion of ice, water, or other countawinants
iato the system during the £illing process.

It was required that the adapter in the aircraft be easily replaceable
and designed to break away without damage to the aircraft if the supply
truck pulled away from the aireraft without disconnecting the supply hose,
and that the part of the adapter remaining in the aircraft automatically
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close in the event of a break, to preclude the loss of hydrogen from the
aircraft.

It was a design requirement that the quick discomnect be suitable for

manual handling, installation, and control, by personnel wearing the neces-

sary protective gloves and clothing, and that the required manual force of
installation and actuation nor exceed 22.2 daN (50 1b).

From the safety viewpoint, it was required that the ground vapor re-
covery adapter be designed to preclude inadvertent wmating with the LH
fueling nozzie. It was further required that complete electrical confact
be established between the two adapters before they were connected, and
that the contact resistance not exceed 10 ohms.

Significant parameters of the selected design were:

Rated flow 0.39 kg/sec (0.87 1b/sec)
Pregsure drop 3.31 kPa (0.48 psid)
Operating pressure 110.3 kPa (16.0 psia)
Duct diameter 9,86 cm (3.88 in)
Weight

Airborne adapter 2.32 kg (5.11 1b)

Ground adapter 5.15 kg (11.36 1b)

A schematic diagram, and description of the quick disconnect design and
operation are presented in Figure 201.

Bl.1.4 Absolute tank pressure relief and veant valve: The absolute tank
pressure rellef and vent valve was an assembly consisting of two tank pres-
sure relief valves and an electric motor driven shutoff valve. One tank
pressure relief valve was designated tha primary relief valve and was de-
signed to maintain an absolute tank pressure of 141.3 kPa (20.5 psia) and
the other tank pressure relief valve was designated the secondary relief
valve and was designed to maintain an absolute tank pressure of 155.1 kPa
(22.5 psia). In the event of failure of the primary valve, the secondary
valve would maintain tank pressure at the value slightly higher than normal,
thus revealing the fact of the primary valve malfunction. The electric

motor shutoff valve was required for use as a purge gas vent valve when in-
itially filling the system.
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Significant parameters of the selected design were:

Primary Pressure Secondary Pressure
Relief Vaive Relief Valve
Rated flow 0.02 kg/sec 0.02 kg/sec
(0.05 1b/cec) (0.05 1b/sec)
Relief pressure 141.3 kPa 155.1 kPa
(20.5 psia) (22.5 psia)
Pressure drop 0.025 kPa 0.025 kPa
(0.1 in. 320) (0.1 zn HZO)
Duct diameter 9.86 cm 9.86 em
(3.88 in.) (3.88 in.)
Weight for complete
valve assembly 7.93 kg (15.5 1b)
Estimated MTBF
Primary pressure relief valve 50 000 hr
Secondard pressure relief valve S50 000 hr
Veat valve 15 000 hr

A schematic diagram, and description of the valve design and operation
are presented in Figure 202.

Referring to the schematic drawings for the pressure relief valves, the
operation may be understood as follows: Vapor from the tank bleeds thru the
poppet orifice into the reference pressure chamber and incurs a pressure
drop thru the orifice. The pilot valve and partially evacuated bdellows
bleed vapor from the reference pressure chamber as required to maintain the
chamber absolute pressure at a preselected value. The resulting chamber
pressure is determined by the design of the pilot valve and partially evacu-
at.d bellows, and by the position setting of the adjustment screw. The value
of chamber absolute pressure is selected to be such that the resulting pres-
sure force on the main poppet, plus the force of the poppet actuation bel-
lous, is just equal to the Jesired tank pressure times the main poppet area.
If the tank pressure slightly exceeds the desired value, the main poppet will
open to a modulated position, thus venting vapor from the tank and thergby
limiting further increase in tank pressure.

Bl.1.5 Absolute tank pressure regulator. - The absolute tank pressure regu-
lator was required to sense the LH, tank absolute pressure, and supply LH
as required to a vaporizing heat exchanger (boiler) to generate vapor for
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tank pressurizarion, if normal tank boil-off was not sufficient to maintain
tank pressure at the primary relief valve absolute pressure level.

Significant parameters of the cclected design were:

Liquid 3ide Gas Side

Rated flow 0.02 kg/sec 0.02 kg/sec :
(0.050 1b/sec) (0.050 1b/sec) !
Pressure drop 1.77 kPa 77.33 kPa
(0.256 psid) (11.22 psid) <
4
Operating pressure 272.3 kPa 262.0 kPa 3
(39.5 psia) (38.0 psia) 1
4
Duct diameter 0.960 cm 0.960 em !

(0.378 in.) (0.378 in.)

Weight 2.33 kg

(5.23 1b) -
. Estimated MTBF 40 000 hr "
A schematic diagram, and description of the valve design and operatiom, )
are presented in Figure 203. E
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APPENDIX C

CONCEPT SCREENING ANALYSIS THERMAL MODEL DEVELOFPMENT

The LB; airplane tank screening model was developed considering an ele-
mental length of a horizontal cylinder filled with LH2. Both the liquid and
vapor volumes can be expected to stratify, with rather high wall temperatures
possible opposite the ullage volume. Temperature distribution of the tanmk
wall is needed to determine the heat leak into the tank through the insula-
tion system, and also for structural apalysis of the tank. Only two tempera-
tures are fixed in this problem, the liquid surface temperature Tg, which cor-
responds to the vent pressure, and the ambient temperature T, surrounding the
tank. A complicating feature is the need to consider the variable thermal
properties of the tank wall insulation system, and the liquid and vapor
phases under the ranges of temperature expected for these components.

Solution for the remperature distribution of the tank wall (Figure C-1) as
a function of the heat transfer coefficients to the wall is obtained with an
analysis similar to Jakob [41]. PFigure 204 assumes that the 1iquid vapor inter-
face is at X = 0, with the liquid at X < 0 and the vapor at X > 0 along the
tauk wall. As the temperature distribution solutions cf the tank wall will be
similar for the regions opposite the liquid and vapor, we solve for the tempera-
ture distribution opposite the vapor, where X = 0. For a steady state energy
balance on the differential element dx; of unit width:

2

_ a7

& (by + ) (T T y) (c1)

1
T T
" /" " f*
% - ] x . d ?
4 /4
hy ’ 'r/ hy ’
=0 T 2< Ty ;=0
T =Ts Ts T =Tyy
LiauiD, L k/ VAPOR, V

Figure 204, - Tank wall model.
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where

h. T, + hv T,
- 1A v . 1 -
Toy (hI ry hv) the wall temp that would occur if X — wo.

Based upon Carslaw and Jaegerikz] solutioas for constant thermal conduc-
tivity can be converted to variable conductivity solutions by making use of
thermal conductivity integrals, providing the boundary conditions are specified
only as temperature or the temperature slope. Starting with a constant thermal
property solution of equation (Cl), which can be rearranged as:

1 _ Crthy) g (c2)
de kt

Letting

- (hI * E!B » SO that
Ty kE

2
- d 2T = mvz (T - T) (c3)

ax

The solution to this differential equation is:

+m X

T = I,v + Mv e-mvx + Nv e

The integration constants M_ and Nv are evaluated from two boundary con~
ditions. The slope is dT7/dx = 0 at x = f4, but nei:her the magritude or slope

of the temperature is known at x = O. Applying this one boundary condition to
the equation (C3) yields:

g% X
BT e | vmne 4

476

B e e it T

—— ety

e ——

Dataeas et B e e oS 2 - - .



ol - 2 ” - ~ B L3 P o . oIS —— e weM L e e BN
- - yiga o tee Ro n e B R AL S e e R T . .
P it et e ~ re o BTN PRI .- : i

- [, Py B -

al

aﬂm e e ) - o

-n,f
y e Doty -vaﬂv

v = Mv——ﬁv—_"'mv - Moe (cs)

e

Substituting for Nv’ the sclution then becomes

T = va+Hv(e-mvx+e*nvO(-2£v)

, for x =20, (cé6)

The solution for the region opposite the liquid, where x =< 0, is found
from a similar differential equation, which yields:

-m X X
T - TQL-Q-MLemL +NLe+mI'

where

hy T, + 0 Tp
(h1+b.L)

) [thy + h)
i Kt

One integration constant, My, can be solved based upon the boundary condition
that dT/dx = 0 at x = -{;.

Ty

’ X X
S g
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e-leL —ZmLE
Lt R o t (c8)

Subgtituting for HL' the solution opposite the liquid becomes:

(x+2£.) b 4
T = sz + NL (e-mL L + e+mL ) , for x < 0, (C9)

Equationrs (C6) and (C9) contain 2 unknowns, Ny and M,, which can be found
from the condition at x = 0, where T and the slope of T must be equal for both
of these solutions. Setting the temperature T, 0 = Tx <patx = 0, then

Toy + My (1 + e‘-vazv) = Ty v N (e-:nl‘zl‘ + 1) o (c10)

Setting the slopes (dT/dx)x>o - GdT/dx)xso at x = 0 yilelds:

. -2 -2m ¢
""‘v”\z"""vuvemva"nLNLeszL""”LNL (C11)

Solving equation

(C11) for NL, and then substituting N, into equation (C1l0)
yileids: : L

: e
. - oy =

(e-valv - 1) {14 e-zm'LEL - (14 '2“vzv]
e MRS

(c12)

.
n
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The expression for Ny yields the other constant, which is positive:

-2m. 0
mV -(emvv—l) . (.r —T)
-2r £ wy L
4 (1 e = L)
NL= -
-2y ly ~2a g ~2m 2+ ]
AT AP TN . T I (l+e“‘vv)J
L (l - e-szEL
Hence, the complete solution, using the above values of Mv and NL is:
-m (X+22) X
T = IEL + NL e L L + e+mL , for x = 0.
X-2£ )
X, emv v , for x = O.

T = I‘V + Hv e

where
_ [areg
o kt
] hI + hv
n,

(c13)

(C14)

(c1%)

The tank wall temperature solution for the case of variable conductivity

in the wall, insulation, and fluids is determined by assuming all of the
The thermal conduc-

thermal conductivities are proportional to temperature.
tivity integral then will have the form

- it Y = & it = s ot - e -
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fmr - fk"rd'r -k.72
o (-]
where k' = slope of thermal conductivity curve. -
From Reference (42) the variable properties solution may be obtained
from the comstant k solution by replacing the temperature by the thermal con-
ducitivity integral. The original steady state differential equation expressed
in terms of variable conductivity is
td (). g ’ :
' (k ax Uty ‘s
for the wall opposite the vapor phase.
Since k = k'T -
and
T T . T
' z
o -[kd'l‘ = [k"rd’l‘-k' f’l‘dl‘ = -k?".l’z '
() ° ° 4
v _ k' dT v 4T dT ;
TTT KT x vy
. s
a%u . d (dU) = 4 k(d’l’)
dxz dx \dx -3 dx ¥
&
Hence, the differentisl equation can be expressed by: ;
2 ;
- a‘o R
te —5 = q; + q"; (c16} 5
’ 3
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For the case of variable conductivities in the insulation and vapor

T T k'
A T
q; = e f dT - at| = — ('rz-rz)
1 t kg ky D A
1 |.J hv
o [ o] N
N F Ty Nvk'y
" - - (—2._ 2)
y By f kydT [ k4T - -1,
(-] (Y hv

Hence, the differential equation becomes

k' N, k'

- a& 1 (2 2 w Ky (z 2)

Tt - = T - T P — T° -« T (Cl7)
3 2 2:1 A ) 2 th v

Since U is defined in terms of the wall conductivity k, then the above dif-
ferential equation can be put into the form:

2 k' k! [
-, d&v _ 1 (k' .2 _ k' 2) N“vv(k' 2_ k
t ( 'r TA + i \7T T 3 ‘Ivz) (c18)

hy

[\8]
[ad
-
=
[\
N

2 'S Nu k'
- d%v 1( Yt v
T - = U-U + ———= (0O = .
dxz cIE' A) th k! ( u\7)
since
k! 2
vy =7 I
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From the above equation, solve for the value of U at x - =, when dZU/dxz

= 0.
Defining that value of the wall conducrivity integral as Up,,» then:

L t
kIU Nuvkv .
. —— + —— U
t A D v
1 m,
qn =
1 t
v kI Nuvkv
t + D
I hV

Substitution of Ucnv into the different?al equation then yields:

2 K’ Nu_k*
:x_%’_ = ﬁ (?I_I + —ug-l-;l’) (u - um) = mzv (U - U‘”V). (c19)

This equation for variable conductivity hess exactly the same form as the
constant k differential equation at equation (C3), with U substituted for T.
The total solution for the wall temperature opposite the liquid and vapor
regions can then be taken from the total comstant k solutions completed with
the new definitions of o, and my which yields

oy - 521)

M, = = (-2%2 : (c20)

e V-1 o I P

~ - 1+ - \1+E
= - (1 . ZmLEL) ( e )J
-2mvﬂ

A LA R

R (. L) ( “v °°L)
N - ‘ (c21)

™ (e-valv - 1) . (1 +e‘2m1. L)
R A 15
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' 2u
U-%-TZ. Tz-%and T = ra

These solutions are then used to compute the heat transfer into the fluid.
Assuming that there is no gross vapor motion in the ullage space, Raf< 10 000,
vapor conduction will be the principal mode of heat transfer to a mean vapor
temperature, Iy, with the vapor heat transfer coefficiemt, k,, defined by a
constant Nusselt number, Nu,, and hydraulic diameter, Dy, of the ullage
volume. For steady state heat transfer and venting, not considering LH> with-
drawal from the tank, the liquid boiloff rate is equal to the heat transfer
directly occcurring tc the liquid phase. The vapor will be formed at tempera-
tvre, Tg, and then be heated by the dry tank ullage and finally vented from the
top of <he tank. This vent temperature, Ty, will be a2 function of the boilloff
rate, heat transfer frcm the ullage surfaces and vent pressu-es,

Initially, assume the mean vapor temperature is equal to che average temper-
ature of the walls and liquid surface base of the ullage vapor volume. An itera-
tive solution can then be performed to set the initial assumed T _ equal to the
final computed mean T, based upon the computed wall temperature gariation.

The liquid heat transfer coefficient, hy, 15 computed based upon free con-
vection along a vertical plate of the same height L as the liquid depth in the
tank. Using the Vliet and Liu 43 correlation for constant heat flux, which
closely simulates the heat flux into the liquid, the average liquid Nusselt
Number is given by the following relations:

L

N = M 0.25 (Gr*, pr)?+% R 2 4.2535 x 1012

k. L a

0.20 4 12
Nu = 0.80 (Gr*, Pr) 0= R, 4.2535 x 10
Nu = 5.0476 R, <10
b * a*L =
where
Ry 1* = Cr* Pr
L

g " L“ 2 6 4

Gr*L - —%2— - -—2—2&2 - Q"L = ZL - Q"L
v Bu
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For the ullage vapor, the average conduction Nusselt number, Nuv, is a
coustant based upon hydraulic diameter Dy of the volume, Nu, = hDyy/k, = 4.386.

Having defined temperature distributions and the heat transfer coefficients

an energy balance can now be performed to calculate the mass of liquid evaporated
and the sensible heat in the vapor.

484

a———

PR R PR N AT

PR YN

-

Rt

e

PR

Vel et

PSSO

s



%

e+ AL 1 < A A 1 TER A g P E e A VO ASY R W T VY VRN PR ¢ YRR S 1o o

———

<

A}

PR T TR R
i, s e Teae B A e e LT (GERRRTED
R i i Sl -

APPENDIX D

"TRERM" PROGRAM

A modification of the basic THERM program is used for the fuel tank
analysis program. This program is structured to allow the maximm flexi-
bility in describing energv transport phemomena in a cryogenic storage tank.
Calculations during the energy balance can be performed in any of 24 dummy
subroutines that ave called automatically at various points in the basic
integration algorithms. This permits modification or updating of any aspect
of the model by simply replacing the appropriate dummy routines with sub-
routines containing the desired operations. The fluid stratification problem,
liquid-ullsge coupling through mass and energy exchanges associated with
evaporation, bulk boilipg and condensation, the geometrical calculations
required in the node definition and the various Nusselt number correlations
needed for characterization of several emergy transport mechanisms are all
modeled as subroutinzs that modify and update the basic heat balance
ctalculation.

The program was developed specifically for operation on the UNIVAC 1100
series system. Structurally, it is divided into three maj)or subprograms,
THEERM, CYCLE, and OUTPUT, and a3 number of lesser routines.

THERM is the name of the main program as well as the system. It reads
in and stores the network description from cards, tape or disk, saves the
network data on disks, if necessary, for iestart, and calls CYCLE. (The
term "restart"” in this context refers to the rumnning of two or more cases
on the same run. It does nmot involve taking the job off the machine.) On
return from CYCLE, THERM retrieves the original network from disk, reads in
network changes from cards, updates the network, and again calls CYCLE. After
the last restart, THERM terminates the rum.

CYCLE performs the heat balance calculations. It includes two independ-
ent iterative procedures: ome for converging (i.e., relaxing the network at
a specific time to obtain steady-state conditions at that time) and the other
for the usual thermal analyzer transient calculatiors. In order to increase
the speed and efficiency of the program, several routines that are called

many times, such as the calculation of 2 (1/R) and E (T/R) for each node,
are written as assembly language subroutines.

OUTPUT is called from CYCLE at prescribed times during transient cal-
culations and after a prescribed number of iterations during converge. It

causes the status of the parameters prescribed in the 0" block (see below)
to be listed.

Input consists of nine blacks of data, labeled T, C, Q, R, K, D, O, G,
and P. The initial temperature, capacitance, and heat input (internal plus
external) of each node are input inm the "TI", "C", and "Q" blocks,
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respectively. The "R'" block contains the values and comnections of the
resistors, except the radiation resistors. The "K" block contains tus
values and connections of the radifation resistors (RADK's). Tabular data
are input in the "D" block - the data may consist of periodic or non-
periodic tables or of groups of unrelated constants. The "0" block specifies
the quantities to bc listed during each normal output. These may include
temperatures in any desired units, capacitances, resistors RADK's, tabular

data, problem variables, heat rates, 2 (1/R), and 2 (T/R). Comments

describing the output may also be written. The "P" block contains tihe values
of the problem variables such as initial time, final time, print interval,
fractions of the minimum RC to be used in computing the time step, etc.

The "G'" block specifies the portion of the output that is to be plotted. The
data for each case are ended by an "M card (put data for restart on disk),
an "S'" card (save restart data from preceding case), or an "F" card (final
case).

The user has the option of performing calculations during input through
15 ENTRIES and during the heat balance calculations through 24 MODES. These
are provided in THERM in the form of dummy routines of the form SUBROUTINE
NAME, RETURN, END and are called automatically at various points during input
and during the heat balance. The entry B4D, for example, is called just
before the first data input in the "D" block' B4HB is called just before
CYCLE is called; the MODES similarly provide entry to CYCLE before and after
each significant calculation during the heat balance calculations. If the
user wants to perform calculations or modify the model at any of these points,
he simply replaces the dummy rourine with a hand-coded routine containing the
desired operations.

Direct access to all of the parameters of the model is provided through
THERM's FIND and STORE routines. The function FINDTF(N), for exanple,
produces the current temperature in °F of node N; FINDD (N,I) produces the
value of the I-th location in table N; CALL FINDRH (N,I,J) give ‘the ID's,

I and J, of the nodes to which resistor N is connected: FPTIM(N) firds the
present time (N is a dummy variable required by the systam). Similarly,
CALL STORTF (N,V) stores V in absolute units as the temperature of node N;
CALL STOXD (N,I,V) stores V in the I-th location of rable N; CALL STORRH(N,
I,J) destroys the prevlous connections of resistor N and comnacts it to
nodes I and J; CALL SPTIM(V) changes the present time to V. Other routines
find and store the values of the other parameters.

All of the data, excaept the problem variables and the locatioms and ID's
of the data tables, is stored in one variably-dimensioned array. The number
of cells needed for a given program are five times the maximum node ID, plus
two times the maximum resistor ID, plus two times the maximum RADK ID, plus
one cell for each data item, plus, basically, three cells for each quantity
specified in the output (this varies as to the specific type of output).

The maximum allowable table LD is 300.
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The simplest form of plot output presents the transient temperatures of
up to eight nodes per plot. Considerably more complex graphic output, includ-

ing three-dimensional plots, can be achieved by linkiog THERM with the DISSPLA
plot program that is resident on the computer.
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APPENDIX E

SAFETY ANALYSIS

The safety analysis was a four step process. First, a preliminary wmal-
function ~nalysis was performed to determine if any of the systems had
failure modes dangerous to life or aircraft. Secondly, requirements for
hydrogen detectors were established, third, an assessment of flammability
and toxicity was made, and fourth, the ability to inspect barriers and the
tank was evaluated.

The screening malfunction analysis used a standardized format as shown
in the following tables. For each system, the type of failure was postulated
with the normal resulting condition, the effect of the failure on the flight
and the aircraft and existing protective measures. Table 89 summarizes the
results of the analysis for each concept.
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APPENDIX F

INSULATION CONCEPT PRODUCIBILITY AND OPERATIONAL ANALYSIS

Three tables are included in this appendix. Table 90 is an examination
of how each of the insulation concepts might be fabricated, inspected, and
serviced, and a discussion of areas that may require development. Table 91
is a check list of features of each of the imsulation concepts showing the
frequency with which inspections, and maintenance or operational activicy,
are required. Table 92 shows factors which influence the life expectancy of

each of the insulation concepts and includes a ranking of the concepts on this
basis. '
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APPENDIX G

INSTALLED ENGINE PERFORMANCE CHARTS

Figure 205 through 210 — LH., Engine

2
Figure 211 through 214 — Jet A Engine
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Figure 213. - Jet a engine maximum climb - fuel flow.
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